Structural analysis of point mutations at the Vaccinia virus A20/D4 interface

The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section F, Structural biology communications Structural biology communications, 2016-09, Vol.72 (9), p.687-691
Hauptverfasser: Contesto-Richefeu, Céline, Tarbouriech, Nicolas, Brazzolotto, Xavier, Burmeister, Wim P., Peyrefitte, Christophe N., Iseni, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 9
container_start_page 687
container_title Acta crystallographica. Section F, Structural biology communications
container_volume 72
creator Contesto-Richefeu, Céline
Tarbouriech, Nicolas
Brazzolotto, Xavier
Burmeister, Wim P.
Peyrefitte, Christophe N.
Iseni, Frédéric
description The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface. The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated.
doi_str_mv 10.1107/S2053230X16011778
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835621395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpD-CCInGBQ6jHjr8uSKuFtoilUHWhcLIcr826ZJPFdhb235OQsirlQE-2xs_7zoxnsuwxoBcAiB9dYEQJJugzMATAubiX7Q-hYojdv3Hfyw5jvEIIDTLg8mG2hzmVUlC5n727SKEzqQu6znWj6230MW9dvm59k_JVl3TybRNznfK0tPknbYxvvM43PnQxn2B09KrMe9QGp419lD1wuo728Po8yD4ev55PT4vZ-5M308msMJRjVAjHacmF0I5VDFNMhZVCa8oqDZbDonTAKs6ExtgYxKTmuLIOuwV13DokyUH2cvRdd9XKLoxtUt-AWge_0mGrWu3V3y-NX6qv7UZRBBgj0Rs8Hw2Wt2Snk5kaYgikJALTDfTss-tkof3e2ZjUykdj61o3tu2iAkEow0AkvQOKuZBM4vIOKHBBBJSsR5_eQq_aLvTD-p2bl6SUgHoKRsqENsZg3a4vQGoYvfpnY3rNk5v_uFP82Y8ekCPww9d2-39HNflyjD-cU0SGgopR62OyP3daHb4pxgmn6vLsRE3F_Ozt7PxSzckvDKzYww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837434910</pqid></control><display><type>article</type><title>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Journals</source><source>PubMed Central</source><creator>Contesto-Richefeu, Céline ; Tarbouriech, Nicolas ; Brazzolotto, Xavier ; Burmeister, Wim P. ; Peyrefitte, Christophe N. ; Iseni, Frédéric</creator><creatorcontrib>Contesto-Richefeu, Céline ; Tarbouriech, Nicolas ; Brazzolotto, Xavier ; Burmeister, Wim P. ; Peyrefitte, Christophe N. ; Iseni, Frédéric</creatorcontrib><description>The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface. The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated.</description><identifier>ISSN: 2053-230X</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S2053230X16011778</identifier><identifier>PMID: 27599859</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Amino Acid Motifs ; Amino acids ; Atomic structure ; Biochemistry, Molecular Biology ; Catalytic Domain ; cation-π interaction ; Cations ; Cloning, Molecular ; Crystal structure ; Crystallization ; Crystallography, X-Ray ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; DNA replication ; DNA-Directed DNA Polymerase ; DNA-Directed DNA Polymerase - chemistry ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Enzymatic activity ; Forming ; Gene Expression ; Life Sciences ; Models, Molecular ; Plasmids ; Plasmids - chemistry ; Plasmids - metabolism ; Point Mutation ; Protein Conformation ; Protein Multimerization ; protein-protein interface ; Recombinant Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Research Communications ; Residues ; Solvation ; Structural analysis ; Structural Biology ; Uracil-DNA Glycosidase ; Uracil-DNA Glycosidase - chemistry ; Uracil-DNA Glycosidase - genetics ; Uracil-DNA Glycosidase - metabolism ; Vaccinia virus ; Vaccinia virus - chemistry ; Vaccinia virus - metabolism ; Viral Proteins ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Viruses ; X-Ray Diffraction ; X-ray structure</subject><ispartof>Acta crystallographica. Section F, Structural biology communications, 2016-09, Vol.72 (9), p.687-691</ispartof><rights>International Union of Crystallography, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>International Union of Crystallography 2016 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</citedby><cites>FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</cites><orcidid>0000-0002-0206-3959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012208/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012208/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27599859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-01993825$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Contesto-Richefeu, Céline</creatorcontrib><creatorcontrib>Tarbouriech, Nicolas</creatorcontrib><creatorcontrib>Brazzolotto, Xavier</creatorcontrib><creatorcontrib>Burmeister, Wim P.</creatorcontrib><creatorcontrib>Peyrefitte, Christophe N.</creatorcontrib><creatorcontrib>Iseni, Frédéric</creatorcontrib><title>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</title><title>Acta crystallographica. Section F, Structural biology communications</title><addtitle>Acta Cryst. F</addtitle><description>The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface. The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated.</description><subject>Amino Acid Motifs</subject><subject>Amino acids</subject><subject>Atomic structure</subject><subject>Biochemistry, Molecular Biology</subject><subject>Catalytic Domain</subject><subject>cation-π interaction</subject><subject>Cations</subject><subject>Cloning, Molecular</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>DNA replication</subject><subject>DNA-Directed DNA Polymerase</subject><subject>DNA-Directed DNA Polymerase - chemistry</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Enzymatic activity</subject><subject>Forming</subject><subject>Gene Expression</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Plasmids</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - metabolism</subject><subject>Point Mutation</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>protein-protein interface</subject><subject>Recombinant Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Research Communications</subject><subject>Residues</subject><subject>Solvation</subject><subject>Structural analysis</subject><subject>Structural Biology</subject><subject>Uracil-DNA Glycosidase</subject><subject>Uracil-DNA Glycosidase - chemistry</subject><subject>Uracil-DNA Glycosidase - genetics</subject><subject>Uracil-DNA Glycosidase - metabolism</subject><subject>Vaccinia virus</subject><subject>Vaccinia virus - chemistry</subject><subject>Vaccinia virus - metabolism</subject><subject>Viral Proteins</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Viruses</subject><subject>X-Ray Diffraction</subject><subject>X-ray structure</subject><issn>2053-230X</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEolXpD-CCInGBQ6jHjr8uSKuFtoilUHWhcLIcr826ZJPFdhb235OQsirlQE-2xs_7zoxnsuwxoBcAiB9dYEQJJugzMATAubiX7Q-hYojdv3Hfyw5jvEIIDTLg8mG2hzmVUlC5n727SKEzqQu6znWj6230MW9dvm59k_JVl3TybRNznfK0tPknbYxvvM43PnQxn2B09KrMe9QGp419lD1wuo728Po8yD4ev55PT4vZ-5M308msMJRjVAjHacmF0I5VDFNMhZVCa8oqDZbDonTAKs6ExtgYxKTmuLIOuwV13DokyUH2cvRdd9XKLoxtUt-AWge_0mGrWu3V3y-NX6qv7UZRBBgj0Rs8Hw2Wt2Snk5kaYgikJALTDfTss-tkof3e2ZjUykdj61o3tu2iAkEow0AkvQOKuZBM4vIOKHBBBJSsR5_eQq_aLvTD-p2bl6SUgHoKRsqENsZg3a4vQGoYvfpnY3rNk5v_uFP82Y8ekCPww9d2-39HNflyjD-cU0SGgopR62OyP3daHb4pxgmn6vLsRE3F_Ozt7PxSzckvDKzYww</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Contesto-Richefeu, Céline</creator><creator>Tarbouriech, Nicolas</creator><creator>Brazzolotto, Xavier</creator><creator>Burmeister, Wim P.</creator><creator>Peyrefitte, Christophe N.</creator><creator>Iseni, Frédéric</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0206-3959</orcidid></search><sort><creationdate>201609</creationdate><title>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</title><author>Contesto-Richefeu, Céline ; Tarbouriech, Nicolas ; Brazzolotto, Xavier ; Burmeister, Wim P. ; Peyrefitte, Christophe N. ; Iseni, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Motifs</topic><topic>Amino acids</topic><topic>Atomic structure</topic><topic>Biochemistry, Molecular Biology</topic><topic>Catalytic Domain</topic><topic>cation-π interaction</topic><topic>Cations</topic><topic>Cloning, Molecular</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>DNA replication</topic><topic>DNA-Directed DNA Polymerase</topic><topic>DNA-Directed DNA Polymerase - chemistry</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Enzymatic activity</topic><topic>Forming</topic><topic>Gene Expression</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Plasmids</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - metabolism</topic><topic>Point Mutation</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>protein-protein interface</topic><topic>Recombinant Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Research Communications</topic><topic>Residues</topic><topic>Solvation</topic><topic>Structural analysis</topic><topic>Structural Biology</topic><topic>Uracil-DNA Glycosidase</topic><topic>Uracil-DNA Glycosidase - chemistry</topic><topic>Uracil-DNA Glycosidase - genetics</topic><topic>Uracil-DNA Glycosidase - metabolism</topic><topic>Vaccinia virus</topic><topic>Vaccinia virus - chemistry</topic><topic>Vaccinia virus - metabolism</topic><topic>Viral Proteins</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Viruses</topic><topic>X-Ray Diffraction</topic><topic>X-ray structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contesto-Richefeu, Céline</creatorcontrib><creatorcontrib>Tarbouriech, Nicolas</creatorcontrib><creatorcontrib>Brazzolotto, Xavier</creatorcontrib><creatorcontrib>Burmeister, Wim P.</creatorcontrib><creatorcontrib>Peyrefitte, Christophe N.</creatorcontrib><creatorcontrib>Iseni, Frédéric</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contesto-Richefeu, Céline</au><au>Tarbouriech, Nicolas</au><au>Brazzolotto, Xavier</au><au>Burmeister, Wim P.</au><au>Peyrefitte, Christophe N.</au><au>Iseni, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</atitle><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle><addtitle>Acta Cryst. F</addtitle><date>2016-09</date><risdate>2016</risdate><volume>72</volume><issue>9</issue><spage>687</spage><epage>691</epage><pages>687-691</pages><issn>2053-230X</issn><eissn>2053-230X</eissn><abstract>The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface. The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>27599859</pmid><doi>10.1107/S2053230X16011778</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0206-3959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-230X
ispartof Acta crystallographica. Section F, Structural biology communications, 2016-09, Vol.72 (9), p.687-691
issn 2053-230X
2053-230X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012208
source MEDLINE; Full-Text Journals in Chemistry (Open access); Wiley Journals; PubMed Central
subjects Amino Acid Motifs
Amino acids
Atomic structure
Biochemistry, Molecular Biology
Catalytic Domain
cation-π interaction
Cations
Cloning, Molecular
Crystal structure
Crystallization
Crystallography, X-Ray
Deoxyribonucleic acid
DNA
DNA polymerase
DNA replication
DNA-Directed DNA Polymerase
DNA-Directed DNA Polymerase - chemistry
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - metabolism
Enzymatic activity
Forming
Gene Expression
Life Sciences
Models, Molecular
Plasmids
Plasmids - chemistry
Plasmids - metabolism
Point Mutation
Protein Conformation
Protein Multimerization
protein-protein interface
Recombinant Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Research Communications
Residues
Solvation
Structural analysis
Structural Biology
Uracil-DNA Glycosidase
Uracil-DNA Glycosidase - chemistry
Uracil-DNA Glycosidase - genetics
Uracil-DNA Glycosidase - metabolism
Vaccinia virus
Vaccinia virus - chemistry
Vaccinia virus - metabolism
Viral Proteins
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
Viruses
X-Ray Diffraction
X-ray structure
title Structural analysis of point mutations at the Vaccinia virus A20/D4 interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20point%20mutations%20at%20the%20Vaccinia%20virus%20A20/D4%20interface&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20communications&rft.au=Contesto-Richefeu,%20C%C3%A9line&rft.date=2016-09&rft.volume=72&rft.issue=9&rft.spage=687&rft.epage=691&rft.pages=687-691&rft.issn=2053-230X&rft.eissn=2053-230X&rft_id=info:doi/10.1107/S2053230X16011778&rft_dat=%3Cproquest_pubme%3E1835621395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837434910&rft_id=info:pmid/27599859&rfr_iscdi=true