Structural analysis of point mutations at the Vaccinia virus A20/D4 interface
The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processiv...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section F, Structural biology communications Structural biology communications, 2016-09, Vol.72 (9), p.687-691 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 691 |
---|---|
container_issue | 9 |
container_start_page | 687 |
container_title | Acta crystallographica. Section F, Structural biology communications |
container_volume | 72 |
creator | Contesto-Richefeu, Céline Tarbouriech, Nicolas Brazzolotto, Xavier Burmeister, Wim P. Peyrefitte, Christophe N. Iseni, Frédéric |
description | The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.
The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated. |
doi_str_mv | 10.1107/S2053230X16011778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835621395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpD-CCInGBQ6jHjr8uSKuFtoilUHWhcLIcr826ZJPFdhb235OQsirlQE-2xs_7zoxnsuwxoBcAiB9dYEQJJugzMATAubiX7Q-hYojdv3Hfyw5jvEIIDTLg8mG2hzmVUlC5n727SKEzqQu6znWj6230MW9dvm59k_JVl3TybRNznfK0tPknbYxvvM43PnQxn2B09KrMe9QGp419lD1wuo728Po8yD4ev55PT4vZ-5M308msMJRjVAjHacmF0I5VDFNMhZVCa8oqDZbDonTAKs6ExtgYxKTmuLIOuwV13DokyUH2cvRdd9XKLoxtUt-AWge_0mGrWu3V3y-NX6qv7UZRBBgj0Rs8Hw2Wt2Snk5kaYgikJALTDfTss-tkof3e2ZjUykdj61o3tu2iAkEow0AkvQOKuZBM4vIOKHBBBJSsR5_eQq_aLvTD-p2bl6SUgHoKRsqENsZg3a4vQGoYvfpnY3rNk5v_uFP82Y8ekCPww9d2-39HNflyjD-cU0SGgopR62OyP3daHb4pxgmn6vLsRE3F_Ozt7PxSzckvDKzYww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837434910</pqid></control><display><type>article</type><title>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Journals</source><source>PubMed Central</source><creator>Contesto-Richefeu, Céline ; Tarbouriech, Nicolas ; Brazzolotto, Xavier ; Burmeister, Wim P. ; Peyrefitte, Christophe N. ; Iseni, Frédéric</creator><creatorcontrib>Contesto-Richefeu, Céline ; Tarbouriech, Nicolas ; Brazzolotto, Xavier ; Burmeister, Wim P. ; Peyrefitte, Christophe N. ; Iseni, Frédéric</creatorcontrib><description>The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.
The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated.</description><identifier>ISSN: 2053-230X</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S2053230X16011778</identifier><identifier>PMID: 27599859</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Amino Acid Motifs ; Amino acids ; Atomic structure ; Biochemistry, Molecular Biology ; Catalytic Domain ; cation-π interaction ; Cations ; Cloning, Molecular ; Crystal structure ; Crystallization ; Crystallography, X-Ray ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; DNA replication ; DNA-Directed DNA Polymerase ; DNA-Directed DNA Polymerase - chemistry ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Enzymatic activity ; Forming ; Gene Expression ; Life Sciences ; Models, Molecular ; Plasmids ; Plasmids - chemistry ; Plasmids - metabolism ; Point Mutation ; Protein Conformation ; Protein Multimerization ; protein-protein interface ; Recombinant Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Research Communications ; Residues ; Solvation ; Structural analysis ; Structural Biology ; Uracil-DNA Glycosidase ; Uracil-DNA Glycosidase - chemistry ; Uracil-DNA Glycosidase - genetics ; Uracil-DNA Glycosidase - metabolism ; Vaccinia virus ; Vaccinia virus - chemistry ; Vaccinia virus - metabolism ; Viral Proteins ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Viruses ; X-Ray Diffraction ; X-ray structure</subject><ispartof>Acta crystallographica. Section F, Structural biology communications, 2016-09, Vol.72 (9), p.687-691</ispartof><rights>International Union of Crystallography, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>International Union of Crystallography 2016 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</citedby><cites>FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</cites><orcidid>0000-0002-0206-3959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012208/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012208/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27599859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-01993825$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Contesto-Richefeu, Céline</creatorcontrib><creatorcontrib>Tarbouriech, Nicolas</creatorcontrib><creatorcontrib>Brazzolotto, Xavier</creatorcontrib><creatorcontrib>Burmeister, Wim P.</creatorcontrib><creatorcontrib>Peyrefitte, Christophe N.</creatorcontrib><creatorcontrib>Iseni, Frédéric</creatorcontrib><title>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</title><title>Acta crystallographica. Section F, Structural biology communications</title><addtitle>Acta Cryst. F</addtitle><description>The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.
The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated.</description><subject>Amino Acid Motifs</subject><subject>Amino acids</subject><subject>Atomic structure</subject><subject>Biochemistry, Molecular Biology</subject><subject>Catalytic Domain</subject><subject>cation-π interaction</subject><subject>Cations</subject><subject>Cloning, Molecular</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>DNA replication</subject><subject>DNA-Directed DNA Polymerase</subject><subject>DNA-Directed DNA Polymerase - chemistry</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Enzymatic activity</subject><subject>Forming</subject><subject>Gene Expression</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Plasmids</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - metabolism</subject><subject>Point Mutation</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>protein-protein interface</subject><subject>Recombinant Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Research Communications</subject><subject>Residues</subject><subject>Solvation</subject><subject>Structural analysis</subject><subject>Structural Biology</subject><subject>Uracil-DNA Glycosidase</subject><subject>Uracil-DNA Glycosidase - chemistry</subject><subject>Uracil-DNA Glycosidase - genetics</subject><subject>Uracil-DNA Glycosidase - metabolism</subject><subject>Vaccinia virus</subject><subject>Vaccinia virus - chemistry</subject><subject>Vaccinia virus - metabolism</subject><subject>Viral Proteins</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Viruses</subject><subject>X-Ray Diffraction</subject><subject>X-ray structure</subject><issn>2053-230X</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEolXpD-CCInGBQ6jHjr8uSKuFtoilUHWhcLIcr826ZJPFdhb235OQsirlQE-2xs_7zoxnsuwxoBcAiB9dYEQJJugzMATAubiX7Q-hYojdv3Hfyw5jvEIIDTLg8mG2hzmVUlC5n727SKEzqQu6znWj6230MW9dvm59k_JVl3TybRNznfK0tPknbYxvvM43PnQxn2B09KrMe9QGp419lD1wuo728Po8yD4ev55PT4vZ-5M308msMJRjVAjHacmF0I5VDFNMhZVCa8oqDZbDonTAKs6ExtgYxKTmuLIOuwV13DokyUH2cvRdd9XKLoxtUt-AWge_0mGrWu3V3y-NX6qv7UZRBBgj0Rs8Hw2Wt2Snk5kaYgikJALTDfTss-tkof3e2ZjUykdj61o3tu2iAkEow0AkvQOKuZBM4vIOKHBBBJSsR5_eQq_aLvTD-p2bl6SUgHoKRsqENsZg3a4vQGoYvfpnY3rNk5v_uFP82Y8ekCPww9d2-39HNflyjD-cU0SGgopR62OyP3daHb4pxgmn6vLsRE3F_Ozt7PxSzckvDKzYww</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Contesto-Richefeu, Céline</creator><creator>Tarbouriech, Nicolas</creator><creator>Brazzolotto, Xavier</creator><creator>Burmeister, Wim P.</creator><creator>Peyrefitte, Christophe N.</creator><creator>Iseni, Frédéric</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0206-3959</orcidid></search><sort><creationdate>201609</creationdate><title>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</title><author>Contesto-Richefeu, Céline ; Tarbouriech, Nicolas ; Brazzolotto, Xavier ; Burmeister, Wim P. ; Peyrefitte, Christophe N. ; Iseni, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5720-8f754788af6b625258e98aa56ba1e71d4f16b768a22cc069a72bef2fd5f7ef093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Motifs</topic><topic>Amino acids</topic><topic>Atomic structure</topic><topic>Biochemistry, Molecular Biology</topic><topic>Catalytic Domain</topic><topic>cation-π interaction</topic><topic>Cations</topic><topic>Cloning, Molecular</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>DNA replication</topic><topic>DNA-Directed DNA Polymerase</topic><topic>DNA-Directed DNA Polymerase - chemistry</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Enzymatic activity</topic><topic>Forming</topic><topic>Gene Expression</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Plasmids</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - metabolism</topic><topic>Point Mutation</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>protein-protein interface</topic><topic>Recombinant Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Research Communications</topic><topic>Residues</topic><topic>Solvation</topic><topic>Structural analysis</topic><topic>Structural Biology</topic><topic>Uracil-DNA Glycosidase</topic><topic>Uracil-DNA Glycosidase - chemistry</topic><topic>Uracil-DNA Glycosidase - genetics</topic><topic>Uracil-DNA Glycosidase - metabolism</topic><topic>Vaccinia virus</topic><topic>Vaccinia virus - chemistry</topic><topic>Vaccinia virus - metabolism</topic><topic>Viral Proteins</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Viruses</topic><topic>X-Ray Diffraction</topic><topic>X-ray structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contesto-Richefeu, Céline</creatorcontrib><creatorcontrib>Tarbouriech, Nicolas</creatorcontrib><creatorcontrib>Brazzolotto, Xavier</creatorcontrib><creatorcontrib>Burmeister, Wim P.</creatorcontrib><creatorcontrib>Peyrefitte, Christophe N.</creatorcontrib><creatorcontrib>Iseni, Frédéric</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contesto-Richefeu, Céline</au><au>Tarbouriech, Nicolas</au><au>Brazzolotto, Xavier</au><au>Burmeister, Wim P.</au><au>Peyrefitte, Christophe N.</au><au>Iseni, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of point mutations at the Vaccinia virus A20/D4 interface</atitle><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle><addtitle>Acta Cryst. F</addtitle><date>2016-09</date><risdate>2016</risdate><volume>72</volume><issue>9</issue><spage>687</spage><epage>691</epage><pages>687-691</pages><issn>2053-230X</issn><eissn>2053-230X</eissn><abstract>The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil‐DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4‐R167A/A201–50, D4‐P173G/A201–50 and D4/A201–50‐W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.
The Vaccinia virus D4/A20 complex is the DNA polymerase cofactor. The heterodimer interface has been analysed using three new crystal structures of the complex in which key residues forming a cation–π interaction have been mutated.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>27599859</pmid><doi>10.1107/S2053230X16011778</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0206-3959</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-230X |
ispartof | Acta crystallographica. Section F, Structural biology communications, 2016-09, Vol.72 (9), p.687-691 |
issn | 2053-230X 2053-230X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012208 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); Wiley Journals; PubMed Central |
subjects | Amino Acid Motifs Amino acids Atomic structure Biochemistry, Molecular Biology Catalytic Domain cation-π interaction Cations Cloning, Molecular Crystal structure Crystallization Crystallography, X-Ray Deoxyribonucleic acid DNA DNA polymerase DNA replication DNA-Directed DNA Polymerase DNA-Directed DNA Polymerase - chemistry DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - metabolism Enzymatic activity Forming Gene Expression Life Sciences Models, Molecular Plasmids Plasmids - chemistry Plasmids - metabolism Point Mutation Protein Conformation Protein Multimerization protein-protein interface Recombinant Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Research Communications Residues Solvation Structural analysis Structural Biology Uracil-DNA Glycosidase Uracil-DNA Glycosidase - chemistry Uracil-DNA Glycosidase - genetics Uracil-DNA Glycosidase - metabolism Vaccinia virus Vaccinia virus - chemistry Vaccinia virus - metabolism Viral Proteins Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism Viruses X-Ray Diffraction X-ray structure |
title | Structural analysis of point mutations at the Vaccinia virus A20/D4 interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20point%20mutations%20at%20the%20Vaccinia%20virus%20A20/D4%20interface&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20communications&rft.au=Contesto-Richefeu,%20C%C3%A9line&rft.date=2016-09&rft.volume=72&rft.issue=9&rft.spage=687&rft.epage=691&rft.pages=687-691&rft.issn=2053-230X&rft.eissn=2053-230X&rft_id=info:doi/10.1107/S2053230X16011778&rft_dat=%3Cproquest_pubme%3E1835621395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837434910&rft_id=info:pmid/27599859&rfr_iscdi=true |