Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP
Therecent development and availability of different genotype by sequencing (GBS) protocols provided a cost-effective approach to perform high-resolution genomic analysis of entire populations in different species. The central component of all these protocols is the digestion of the initial DNA with...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2016-08, Vol.17 Suppl 5 (Suppl 5), p.498-498, Article 498 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 498 |
---|---|
container_issue | Suppl 5 |
container_start_page | 498 |
container_title | BMC genomics |
container_volume | 17 Suppl 5 |
creator | Perea, Claudia De La Hoz, Juan Fernando Cruz, Daniel Felipe Lobaton, Juan David Izquierdo, Paulo Quintero, Juan Camilo Raatz, Bodo Duitama, Jorge |
description | Therecent development and availability of different genotype by sequencing (GBS) protocols provided a cost-effective approach to perform high-resolution genomic analysis of entire populations in different species. The central component of all these protocols is the digestion of the initial DNA with known restriction enzymes, to generate sequencing fragments at predictable and reproducible sites. This allows to genotype thousands of genetic markers on populations with hundreds of individuals. Because GBS protocols achieve parallel genotyping through high throughput sequencing (HTS), every GBS protocol must include a bioinformatics pipeline for analysis of HTS data. Our bioinformatics group recently developed the Next Generation Sequencing Eclipse Plugin (NGSEP) for accurate, efficient, and user-friendly analysis of HTS data.
Here we present the latest functionalities implemented in NGSEP in the context of the analysis of GBS data. We implemented a one step wizard to perform parallel read alignment, variants identification and genotyping from HTS reads sequenced from entire populations. We added different filters for variants, samples and genotype calls as well as calculation of summary statistics overall and per sample, and diversity statistics per site. NGSEP includes a module to translate genotype calls to some of the most widely used input formats for integration with several tools to perform downstream analyses such as population structure analysis, construction of genetic maps, genetic mapping of complex traits and phenotype prediction for genomic selection. We assessed the accuracy of NGSEP on two highly heterozygous F1 cassava populations and on an inbred common bean population, and we showed that NGSEP provides similar or better accuracy compared to other widely used software packages for variants detection such as GATK, Samtools and Tassel.
NGSEP is a powerful, accurate and efficient bioinformatics software tool for analysis of HTS data, and also one of the best bioinformatic packages to facilitate the analysis and to maximize the genomic variability information that can be obtained from GBS experiments for population genomics. |
doi_str_mv | 10.1186/s12864-016-2827-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A464263897</galeid><sourcerecordid>A464263897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-cefb271eb5f3495bedef74a5eaeb5bcf5d94ebc2ac3a16513952cc3e5c6a9a553</originalsourceid><addsrcrecordid>eNptks1O3DAUha2qqFDoA3RTWeoGFqH-iZ1kUwkQDEiorZh2bTnOdXCV2EPsaTtvj6MBxEiVF7auv3Ose30Q-kjJKaW1_BIpq2VZECoLVrOqqN6gA1pWtGBUlm9fnffR-xh_E0Krmol3aJ9VohYNkwfo6twF522YRp2cwdrrYRNdxMHiHnxImxXgdoMjPKzBG-d7fLw4X57gTieN_7p0j78tlpc_jtCe1UOED0_7Ifp1dfnz4rq4_b64uTi7LYwgJBUGbMsqCq2wvGxECx3YqtQCdC61xoquKaE1TBuuqRSUN4IZw0EYqRstBD9EX7e-q3U7QmfAp0kPajW5UU8bFbRTuzfe3as-_FH5-UaIKhscPxlMIbcUkxpdNDAM2kNYR0VrKiXnJSEZ_bxFez2AmoeUHc2Mq7NSlkzyupkNT_9D5dXB6EzwYF2u7whOdgSZSfAv9Xodo7pZ3u2ydMuaKcQ4gX3plBI1R0BtI6ByBNQcATVrPr0e0Yvi-c_5I0sAq3E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816633400</pqid></control><display><type>article</type><title>Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><creator>Perea, Claudia ; De La Hoz, Juan Fernando ; Cruz, Daniel Felipe ; Lobaton, Juan David ; Izquierdo, Paulo ; Quintero, Juan Camilo ; Raatz, Bodo ; Duitama, Jorge</creator><creatorcontrib>Perea, Claudia ; De La Hoz, Juan Fernando ; Cruz, Daniel Felipe ; Lobaton, Juan David ; Izquierdo, Paulo ; Quintero, Juan Camilo ; Raatz, Bodo ; Duitama, Jorge</creatorcontrib><description>Therecent development and availability of different genotype by sequencing (GBS) protocols provided a cost-effective approach to perform high-resolution genomic analysis of entire populations in different species. The central component of all these protocols is the digestion of the initial DNA with known restriction enzymes, to generate sequencing fragments at predictable and reproducible sites. This allows to genotype thousands of genetic markers on populations with hundreds of individuals. Because GBS protocols achieve parallel genotyping through high throughput sequencing (HTS), every GBS protocol must include a bioinformatics pipeline for analysis of HTS data. Our bioinformatics group recently developed the Next Generation Sequencing Eclipse Plugin (NGSEP) for accurate, efficient, and user-friendly analysis of HTS data.
Here we present the latest functionalities implemented in NGSEP in the context of the analysis of GBS data. We implemented a one step wizard to perform parallel read alignment, variants identification and genotyping from HTS reads sequenced from entire populations. We added different filters for variants, samples and genotype calls as well as calculation of summary statistics overall and per sample, and diversity statistics per site. NGSEP includes a module to translate genotype calls to some of the most widely used input formats for integration with several tools to perform downstream analyses such as population structure analysis, construction of genetic maps, genetic mapping of complex traits and phenotype prediction for genomic selection. We assessed the accuracy of NGSEP on two highly heterozygous F1 cassava populations and on an inbred common bean population, and we showed that NGSEP provides similar or better accuracy compared to other widely used software packages for variants detection such as GATK, Samtools and Tassel.
NGSEP is a powerful, accurate and efficient bioinformatics software tool for analysis of HTS data, and also one of the best bioinformatic packages to facilitate the analysis and to maximize the genomic variability information that can be obtained from GBS experiments for population genomics.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-016-2827-7</identifier><identifier>PMID: 27585926</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Computational Biology ; Genes, Plant ; Genotype ; Genotyping Techniques ; High-Throughput Nucleotide Sequencing ; Identification and classification ; Manihot - genetics ; Phaseolus - genetics ; Population genetics ; Sequence Analysis, DNA ; Single nucleotide polymorphisms</subject><ispartof>BMC genomics, 2016-08, Vol.17 Suppl 5 (Suppl 5), p.498-498, Article 498</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-cefb271eb5f3495bedef74a5eaeb5bcf5d94ebc2ac3a16513952cc3e5c6a9a553</citedby><cites>FETCH-LOGICAL-c500t-cefb271eb5f3495bedef74a5eaeb5bcf5d94ebc2ac3a16513952cc3e5c6a9a553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009557/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009557/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27585926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perea, Claudia</creatorcontrib><creatorcontrib>De La Hoz, Juan Fernando</creatorcontrib><creatorcontrib>Cruz, Daniel Felipe</creatorcontrib><creatorcontrib>Lobaton, Juan David</creatorcontrib><creatorcontrib>Izquierdo, Paulo</creatorcontrib><creatorcontrib>Quintero, Juan Camilo</creatorcontrib><creatorcontrib>Raatz, Bodo</creatorcontrib><creatorcontrib>Duitama, Jorge</creatorcontrib><title>Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Therecent development and availability of different genotype by sequencing (GBS) protocols provided a cost-effective approach to perform high-resolution genomic analysis of entire populations in different species. The central component of all these protocols is the digestion of the initial DNA with known restriction enzymes, to generate sequencing fragments at predictable and reproducible sites. This allows to genotype thousands of genetic markers on populations with hundreds of individuals. Because GBS protocols achieve parallel genotyping through high throughput sequencing (HTS), every GBS protocol must include a bioinformatics pipeline for analysis of HTS data. Our bioinformatics group recently developed the Next Generation Sequencing Eclipse Plugin (NGSEP) for accurate, efficient, and user-friendly analysis of HTS data.
Here we present the latest functionalities implemented in NGSEP in the context of the analysis of GBS data. We implemented a one step wizard to perform parallel read alignment, variants identification and genotyping from HTS reads sequenced from entire populations. We added different filters for variants, samples and genotype calls as well as calculation of summary statistics overall and per sample, and diversity statistics per site. NGSEP includes a module to translate genotype calls to some of the most widely used input formats for integration with several tools to perform downstream analyses such as population structure analysis, construction of genetic maps, genetic mapping of complex traits and phenotype prediction for genomic selection. We assessed the accuracy of NGSEP on two highly heterozygous F1 cassava populations and on an inbred common bean population, and we showed that NGSEP provides similar or better accuracy compared to other widely used software packages for variants detection such as GATK, Samtools and Tassel.
NGSEP is a powerful, accurate and efficient bioinformatics software tool for analysis of HTS data, and also one of the best bioinformatic packages to facilitate the analysis and to maximize the genomic variability information that can be obtained from GBS experiments for population genomics.</description><subject>Computational Biology</subject><subject>Genes, Plant</subject><subject>Genotype</subject><subject>Genotyping Techniques</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Identification and classification</subject><subject>Manihot - genetics</subject><subject>Phaseolus - genetics</subject><subject>Population genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Single nucleotide polymorphisms</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptks1O3DAUha2qqFDoA3RTWeoGFqH-iZ1kUwkQDEiorZh2bTnOdXCV2EPsaTtvj6MBxEiVF7auv3Ose30Q-kjJKaW1_BIpq2VZECoLVrOqqN6gA1pWtGBUlm9fnffR-xh_E0Krmol3aJ9VohYNkwfo6twF522YRp2cwdrrYRNdxMHiHnxImxXgdoMjPKzBG-d7fLw4X57gTieN_7p0j78tlpc_jtCe1UOED0_7Ifp1dfnz4rq4_b64uTi7LYwgJBUGbMsqCq2wvGxECx3YqtQCdC61xoquKaE1TBuuqRSUN4IZw0EYqRstBD9EX7e-q3U7QmfAp0kPajW5UU8bFbRTuzfe3as-_FH5-UaIKhscPxlMIbcUkxpdNDAM2kNYR0VrKiXnJSEZ_bxFez2AmoeUHc2Mq7NSlkzyupkNT_9D5dXB6EzwYF2u7whOdgSZSfAv9Xodo7pZ3u2ydMuaKcQ4gX3plBI1R0BtI6ByBNQcATVrPr0e0Yvi-c_5I0sAq3E</recordid><startdate>20160831</startdate><enddate>20160831</enddate><creator>Perea, Claudia</creator><creator>De La Hoz, Juan Fernando</creator><creator>Cruz, Daniel Felipe</creator><creator>Lobaton, Juan David</creator><creator>Izquierdo, Paulo</creator><creator>Quintero, Juan Camilo</creator><creator>Raatz, Bodo</creator><creator>Duitama, Jorge</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160831</creationdate><title>Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP</title><author>Perea, Claudia ; De La Hoz, Juan Fernando ; Cruz, Daniel Felipe ; Lobaton, Juan David ; Izquierdo, Paulo ; Quintero, Juan Camilo ; Raatz, Bodo ; Duitama, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-cefb271eb5f3495bedef74a5eaeb5bcf5d94ebc2ac3a16513952cc3e5c6a9a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Biology</topic><topic>Genes, Plant</topic><topic>Genotype</topic><topic>Genotyping Techniques</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Identification and classification</topic><topic>Manihot - genetics</topic><topic>Phaseolus - genetics</topic><topic>Population genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Single nucleotide polymorphisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perea, Claudia</creatorcontrib><creatorcontrib>De La Hoz, Juan Fernando</creatorcontrib><creatorcontrib>Cruz, Daniel Felipe</creatorcontrib><creatorcontrib>Lobaton, Juan David</creatorcontrib><creatorcontrib>Izquierdo, Paulo</creatorcontrib><creatorcontrib>Quintero, Juan Camilo</creatorcontrib><creatorcontrib>Raatz, Bodo</creatorcontrib><creatorcontrib>Duitama, Jorge</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perea, Claudia</au><au>De La Hoz, Juan Fernando</au><au>Cruz, Daniel Felipe</au><au>Lobaton, Juan David</au><au>Izquierdo, Paulo</au><au>Quintero, Juan Camilo</au><au>Raatz, Bodo</au><au>Duitama, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2016-08-31</date><risdate>2016</risdate><volume>17 Suppl 5</volume><issue>Suppl 5</issue><spage>498</spage><epage>498</epage><pages>498-498</pages><artnum>498</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Therecent development and availability of different genotype by sequencing (GBS) protocols provided a cost-effective approach to perform high-resolution genomic analysis of entire populations in different species. The central component of all these protocols is the digestion of the initial DNA with known restriction enzymes, to generate sequencing fragments at predictable and reproducible sites. This allows to genotype thousands of genetic markers on populations with hundreds of individuals. Because GBS protocols achieve parallel genotyping through high throughput sequencing (HTS), every GBS protocol must include a bioinformatics pipeline for analysis of HTS data. Our bioinformatics group recently developed the Next Generation Sequencing Eclipse Plugin (NGSEP) for accurate, efficient, and user-friendly analysis of HTS data.
Here we present the latest functionalities implemented in NGSEP in the context of the analysis of GBS data. We implemented a one step wizard to perform parallel read alignment, variants identification and genotyping from HTS reads sequenced from entire populations. We added different filters for variants, samples and genotype calls as well as calculation of summary statistics overall and per sample, and diversity statistics per site. NGSEP includes a module to translate genotype calls to some of the most widely used input formats for integration with several tools to perform downstream analyses such as population structure analysis, construction of genetic maps, genetic mapping of complex traits and phenotype prediction for genomic selection. We assessed the accuracy of NGSEP on two highly heterozygous F1 cassava populations and on an inbred common bean population, and we showed that NGSEP provides similar or better accuracy compared to other widely used software packages for variants detection such as GATK, Samtools and Tassel.
NGSEP is a powerful, accurate and efficient bioinformatics software tool for analysis of HTS data, and also one of the best bioinformatic packages to facilitate the analysis and to maximize the genomic variability information that can be obtained from GBS experiments for population genomics.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27585926</pmid><doi>10.1186/s12864-016-2827-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2016-08, Vol.17 Suppl 5 (Suppl 5), p.498-498, Article 498 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009557 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; SpringerLink Journals - AutoHoldings; PubMed Central Open Access |
subjects | Computational Biology Genes, Plant Genotype Genotyping Techniques High-Throughput Nucleotide Sequencing Identification and classification Manihot - genetics Phaseolus - genetics Population genetics Sequence Analysis, DNA Single nucleotide polymorphisms |
title | Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatic%20analysis%20of%20genotype%20by%20sequencing%20(GBS)%20data%20with%20NGSEP&rft.jtitle=BMC%20genomics&rft.au=Perea,%20Claudia&rft.date=2016-08-31&rft.volume=17%20Suppl%205&rft.issue=Suppl%205&rft.spage=498&rft.epage=498&rft.pages=498-498&rft.artnum=498&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-016-2827-7&rft_dat=%3Cgale_pubme%3EA464263897%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816633400&rft_id=info:pmid/27585926&rft_galeid=A464263897&rfr_iscdi=true |