From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae
Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that en...
Gespeichert in:
Veröffentlicht in: | Biotechnology for biofuels 2016-09, Vol.9 (1), p.188-188, Article 188 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 1 |
container_start_page | 188 |
container_title | Biotechnology for biofuels |
container_volume | 9 |
creator | Ishii, Jun Okazaki, Fumiyoshi Djohan, Apridah Cameliawati Hara, Kiyotaka Y Asai-Nakashima, Nanami Teramura, Hiroshi Andriani, Ade Tominaga, Masahiro Wakai, Satoshi Kahar, Prihardi Yopi Prasetya, Bambang Ogino, Chiaki Kondo, Akihiko |
description | Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source.
Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate.
We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components. |
doi_str_mv | 10.1186/s13068-016-0600-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4202017961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-3562c359d4d9b9d33562de45a2868e07f173f05e86e585db785b0817fdb46f763</originalsourceid><addsrcrecordid>eNpdkc9uFSEUxonR2Fp9ADeGxI0bFIa_48LENFZNmrhQ14SBM16aGbjCTM19LR_EZ5LJbZvqCjj8vu9w-BB6zuhrxox6UxmnyhDKFKGKUiIeoFOmpSDKcPHw3v4EPan1ilLFNNWP0UmnZS96Jk_Rr4uSZzy7lFzCS8ZDzLDsXMrTW-xhmnBdy-g8YJ9JiHU_uQPOI_7zmxw1rgJ2KdwWco1hK-WED-Dqgr8673eu9Th4qM2xwHWs0cFT9Gh0U4VnN-sZ-n7x4dv5J3L55ePn8_eXxAvNFsKl6jyXfRChH_rAt3MAIV1nlAGqR6b5SCUYBdLIMGgjB2qYHsMg1KgVP0Pvjr77dZgheEhLcZPdlzi7crDZRfvvTYo7-yNfW0lpL4VsBq9uDEr-uUJd7Bzr9jMuQV6rZa0b7bTQfUNf_ode5bWkNl6jOtlp3hvdKHakfMm1FhjvHsOo3WK1x1hti9VusVrRNC_uT3GnuM2R_wUBI6CL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825273987</pqid></control><display><type>article</type><title>From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ishii, Jun ; Okazaki, Fumiyoshi ; Djohan, Apridah Cameliawati ; Hara, Kiyotaka Y ; Asai-Nakashima, Nanami ; Teramura, Hiroshi ; Andriani, Ade ; Tominaga, Masahiro ; Wakai, Satoshi ; Kahar, Prihardi ; Yopi ; Prasetya, Bambang ; Ogino, Chiaki ; Kondo, Akihiko</creator><creatorcontrib>Ishii, Jun ; Okazaki, Fumiyoshi ; Djohan, Apridah Cameliawati ; Hara, Kiyotaka Y ; Asai-Nakashima, Nanami ; Teramura, Hiroshi ; Andriani, Ade ; Tominaga, Masahiro ; Wakai, Satoshi ; Kahar, Prihardi ; Yopi ; Prasetya, Bambang ; Ogino, Chiaki ; Kondo, Akihiko</creatorcontrib><description>Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source.
Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate.
We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-016-0600-4</identifier><identifier>PMID: 27594915</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Biodiesel fuels ; Biofuels ; Carbon ; Cell growth ; Cellulase ; Cloning ; Enzymes ; Ethanol ; Fermentation ; Glucose ; Lignocellulose ; Proteins ; Yeast</subject><ispartof>Biotechnology for biofuels, 2016-09, Vol.9 (1), p.188-188, Article 188</ispartof><rights>Copyright BioMed Central 2016</rights><rights>The Author(s) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-3562c359d4d9b9d33562de45a2868e07f173f05e86e585db785b0817fdb46f763</citedby><cites>FETCH-LOGICAL-c471t-3562c359d4d9b9d33562de45a2868e07f173f05e86e585db785b0817fdb46f763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009545/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009545/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27594915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Jun</creatorcontrib><creatorcontrib>Okazaki, Fumiyoshi</creatorcontrib><creatorcontrib>Djohan, Apridah Cameliawati</creatorcontrib><creatorcontrib>Hara, Kiyotaka Y</creatorcontrib><creatorcontrib>Asai-Nakashima, Nanami</creatorcontrib><creatorcontrib>Teramura, Hiroshi</creatorcontrib><creatorcontrib>Andriani, Ade</creatorcontrib><creatorcontrib>Tominaga, Masahiro</creatorcontrib><creatorcontrib>Wakai, Satoshi</creatorcontrib><creatorcontrib>Kahar, Prihardi</creatorcontrib><creatorcontrib>Yopi</creatorcontrib><creatorcontrib>Prasetya, Bambang</creatorcontrib><creatorcontrib>Ogino, Chiaki</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><title>From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae</title><title>Biotechnology for biofuels</title><addtitle>Biotechnol Biofuels</addtitle><description>Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source.
Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate.
We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.</description><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Carbon</subject><subject>Cell growth</subject><subject>Cellulase</subject><subject>Cloning</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Lignocellulose</subject><subject>Proteins</subject><subject>Yeast</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc9uFSEUxonR2Fp9ADeGxI0bFIa_48LENFZNmrhQ14SBM16aGbjCTM19LR_EZ5LJbZvqCjj8vu9w-BB6zuhrxox6UxmnyhDKFKGKUiIeoFOmpSDKcPHw3v4EPan1ilLFNNWP0UmnZS96Jk_Rr4uSZzy7lFzCS8ZDzLDsXMrTW-xhmnBdy-g8YJ9JiHU_uQPOI_7zmxw1rgJ2KdwWco1hK-WED-Dqgr8673eu9Th4qM2xwHWs0cFT9Gh0U4VnN-sZ-n7x4dv5J3L55ePn8_eXxAvNFsKl6jyXfRChH_rAt3MAIV1nlAGqR6b5SCUYBdLIMGgjB2qYHsMg1KgVP0Pvjr77dZgheEhLcZPdlzi7crDZRfvvTYo7-yNfW0lpL4VsBq9uDEr-uUJd7Bzr9jMuQV6rZa0b7bTQfUNf_ode5bWkNl6jOtlp3hvdKHakfMm1FhjvHsOo3WK1x1hti9VusVrRNC_uT3GnuM2R_wUBI6CL</recordid><startdate>20160902</startdate><enddate>20160902</enddate><creator>Ishii, Jun</creator><creator>Okazaki, Fumiyoshi</creator><creator>Djohan, Apridah Cameliawati</creator><creator>Hara, Kiyotaka Y</creator><creator>Asai-Nakashima, Nanami</creator><creator>Teramura, Hiroshi</creator><creator>Andriani, Ade</creator><creator>Tominaga, Masahiro</creator><creator>Wakai, Satoshi</creator><creator>Kahar, Prihardi</creator><creator>Yopi</creator><creator>Prasetya, Bambang</creator><creator>Ogino, Chiaki</creator><creator>Kondo, Akihiko</creator><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160902</creationdate><title>From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae</title><author>Ishii, Jun ; Okazaki, Fumiyoshi ; Djohan, Apridah Cameliawati ; Hara, Kiyotaka Y ; Asai-Nakashima, Nanami ; Teramura, Hiroshi ; Andriani, Ade ; Tominaga, Masahiro ; Wakai, Satoshi ; Kahar, Prihardi ; Yopi ; Prasetya, Bambang ; Ogino, Chiaki ; Kondo, Akihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-3562c359d4d9b9d33562de45a2868e07f173f05e86e585db785b0817fdb46f763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Carbon</topic><topic>Cell growth</topic><topic>Cellulase</topic><topic>Cloning</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Lignocellulose</topic><topic>Proteins</topic><topic>Yeast</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Jun</creatorcontrib><creatorcontrib>Okazaki, Fumiyoshi</creatorcontrib><creatorcontrib>Djohan, Apridah Cameliawati</creatorcontrib><creatorcontrib>Hara, Kiyotaka Y</creatorcontrib><creatorcontrib>Asai-Nakashima, Nanami</creatorcontrib><creatorcontrib>Teramura, Hiroshi</creatorcontrib><creatorcontrib>Andriani, Ade</creatorcontrib><creatorcontrib>Tominaga, Masahiro</creatorcontrib><creatorcontrib>Wakai, Satoshi</creatorcontrib><creatorcontrib>Kahar, Prihardi</creatorcontrib><creatorcontrib>Yopi</creatorcontrib><creatorcontrib>Prasetya, Bambang</creatorcontrib><creatorcontrib>Ogino, Chiaki</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Jun</au><au>Okazaki, Fumiyoshi</au><au>Djohan, Apridah Cameliawati</au><au>Hara, Kiyotaka Y</au><au>Asai-Nakashima, Nanami</au><au>Teramura, Hiroshi</au><au>Andriani, Ade</au><au>Tominaga, Masahiro</au><au>Wakai, Satoshi</au><au>Kahar, Prihardi</au><au>Yopi</au><au>Prasetya, Bambang</au><au>Ogino, Chiaki</au><au>Kondo, Akihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae</atitle><jtitle>Biotechnology for biofuels</jtitle><addtitle>Biotechnol Biofuels</addtitle><date>2016-09-02</date><risdate>2016</risdate><volume>9</volume><issue>1</issue><spage>188</spage><epage>188</epage><pages>188-188</pages><artnum>188</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source.
Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate.
We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>27594915</pmid><doi>10.1186/s13068-016-0600-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-6834 |
ispartof | Biotechnology for biofuels, 2016-09, Vol.9 (1), p.188-188, Article 188 |
issn | 1754-6834 1754-6834 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009545 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biodiesel fuels Biofuels Carbon Cell growth Cellulase Cloning Enzymes Ethanol Fermentation Glucose Lignocellulose Proteins Yeast |
title | From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20mannan%20to%20bioethanol:%20cell%20surface%20co-display%20of%20%CE%B2-mannanase%20and%20%CE%B2-mannosidase%20on%20yeast%20Saccharomyces%20cerevisiae&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Ishii,%20Jun&rft.date=2016-09-02&rft.volume=9&rft.issue=1&rft.spage=188&rft.epage=188&rft.pages=188-188&rft.artnum=188&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-016-0600-4&rft_dat=%3Cproquest_pubme%3E4202017961%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825273987&rft_id=info:pmid/27594915&rfr_iscdi=true |