Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation
The cyanobacterial circadian oscillator can be reconstituted in vitro by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue nati...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-09, Vol.6 (1), p.32443-32443, Article 32443 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32443 |
---|---|
container_issue | 1 |
container_start_page | 32443 |
container_title | Scientific reports |
container_volume | 6 |
creator | Oyama, Katsuaki Azai, Chihiro Nakamura, Kaori Tanaka, Syun Terauchi, Kazuki |
description | The cyanobacterial circadian oscillator can be reconstituted
in vitro
by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an
in vitro
reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations. |
doi_str_mv | 10.1038/srep32443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816629348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</originalsourceid><addsrcrecordid>eNplkd9KHDEUxkNRqqgXfYES6I0W1mbyb2ZuCrLUtii0F_Y6ZJIza2Q2WZOMMk_Q1zbr2mWtIZBDvh_fOcmH0IeKnFeENV9ShBWjnLN36JASLmaUUbq3Ux-gk5TuSFmCtrxq36MDWouGyIYeor_z4B8gJhc87iA_AnicHwM2wfchLnUugh5wyjpDwqHHV9rNsUvYeTsasLib8MXNb3w72RiGKRVFl41zdIsFRFxMsJm0D502GaIrXsZFo63THodk3DA89zhG-70eEpy8nEfoz-W3m_mP2fWv7z_nF9czIwjPM-haIyXYrq8lNJbT9apkRwTjfU-AMktJa4TgdSnX97K3pKaEkaoDC-wIfd34rsZuCdaAz1EPahXdUsdJBe3Ua8W7W7UID0oQUgsmi8Hpi0EM9yOkrJYuGSjP8BDGpKqmkpK2jDcF_fQfehfGWL5zTbUtkS0nrFBnG8rEkEqY_XaYiqh1wmqbcGE_7k6_Jf_lWYDPGyAVyZcAdlq-cXsC3JqyLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899069403</pqid></control><display><type>article</type><title>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</title><source>SpringerOpen</source><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Oyama, Katsuaki ; Azai, Chihiro ; Nakamura, Kaori ; Tanaka, Syun ; Terauchi, Kazuki</creator><creatorcontrib>Oyama, Katsuaki ; Azai, Chihiro ; Nakamura, Kaori ; Tanaka, Syun ; Terauchi, Kazuki</creatorcontrib><description>The cyanobacterial circadian oscillator can be reconstituted
in vitro
by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an
in vitro
reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32443</identifier><identifier>PMID: 27580682</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/458/1733 ; 631/57/2272/2273 ; 82/16 ; 82/83 ; Adenosine triphosphatase ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Substitution ; ATP ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian Rhythm Signaling Peptides and Proteins - chemistry ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; Circadian rhythms ; Cloning, Molecular ; Electrophoresis, Polyacrylamide Gel - methods ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gel electrophoresis ; Gene Expression Regulation, Bacterial ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Humanities and Social Sciences ; Hydrolysis ; Monomers ; multidisciplinary ; Oscillations ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rosaniline Dyes - chemistry ; Science ; Science (multidisciplinary) ; Synechococcus - genetics ; Synechococcus - metabolism</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.32443-32443, Article 32443</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</citedby><cites>FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27580682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oyama, Katsuaki</creatorcontrib><creatorcontrib>Azai, Chihiro</creatorcontrib><creatorcontrib>Nakamura, Kaori</creatorcontrib><creatorcontrib>Tanaka, Syun</creatorcontrib><creatorcontrib>Terauchi, Kazuki</creatorcontrib><title>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The cyanobacterial circadian oscillator can be reconstituted
in vitro
by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an
in vitro
reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.</description><subject>631/337/458/1733</subject><subject>631/57/2272/2273</subject><subject>82/16</subject><subject>82/83</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Substitution</subject><subject>ATP</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - chemistry</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>Circadian rhythms</subject><subject>Cloning, Molecular</subject><subject>Electrophoresis, Polyacrylamide Gel - methods</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gel electrophoresis</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolysis</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Oscillations</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rosaniline Dyes - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkd9KHDEUxkNRqqgXfYES6I0W1mbyb2ZuCrLUtii0F_Y6ZJIza2Q2WZOMMk_Q1zbr2mWtIZBDvh_fOcmH0IeKnFeENV9ShBWjnLN36JASLmaUUbq3Ux-gk5TuSFmCtrxq36MDWouGyIYeor_z4B8gJhc87iA_AnicHwM2wfchLnUugh5wyjpDwqHHV9rNsUvYeTsasLib8MXNb3w72RiGKRVFl41zdIsFRFxMsJm0D502GaIrXsZFo63THodk3DA89zhG-70eEpy8nEfoz-W3m_mP2fWv7z_nF9czIwjPM-haIyXYrq8lNJbT9apkRwTjfU-AMktJa4TgdSnX97K3pKaEkaoDC-wIfd34rsZuCdaAz1EPahXdUsdJBe3Ua8W7W7UID0oQUgsmi8Hpi0EM9yOkrJYuGSjP8BDGpKqmkpK2jDcF_fQfehfGWL5zTbUtkS0nrFBnG8rEkEqY_XaYiqh1wmqbcGE_7k6_Jf_lWYDPGyAVyZcAdlq-cXsC3JqyLQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Oyama, Katsuaki</creator><creator>Azai, Chihiro</creator><creator>Nakamura, Kaori</creator><creator>Tanaka, Syun</creator><creator>Terauchi, Kazuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</title><author>Oyama, Katsuaki ; Azai, Chihiro ; Nakamura, Kaori ; Tanaka, Syun ; Terauchi, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/337/458/1733</topic><topic>631/57/2272/2273</topic><topic>82/16</topic><topic>82/83</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Substitution</topic><topic>ATP</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - chemistry</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>Circadian rhythms</topic><topic>Cloning, Molecular</topic><topic>Electrophoresis, Polyacrylamide Gel - methods</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gel electrophoresis</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolysis</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Oscillations</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rosaniline Dyes - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyama, Katsuaki</creatorcontrib><creatorcontrib>Azai, Chihiro</creatorcontrib><creatorcontrib>Nakamura, Kaori</creatorcontrib><creatorcontrib>Tanaka, Syun</creatorcontrib><creatorcontrib>Terauchi, Kazuki</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyama, Katsuaki</au><au>Azai, Chihiro</au><au>Nakamura, Kaori</au><au>Tanaka, Syun</au><au>Terauchi, Kazuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32443</spage><epage>32443</epage><pages>32443-32443</pages><artnum>32443</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The cyanobacterial circadian oscillator can be reconstituted
in vitro
by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an
in vitro
reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27580682</pmid><doi>10.1038/srep32443</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-09, Vol.6 (1), p.32443-32443, Article 32443 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007536 |
source | SpringerOpen; MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | 631/337/458/1733 631/57/2272/2273 82/16 82/83 Adenosine triphosphatase Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Amino Acid Substitution ATP Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Circadian rhythm Circadian Rhythm - genetics Circadian Rhythm Signaling Peptides and Proteins - chemistry Circadian Rhythm Signaling Peptides and Proteins - genetics Circadian Rhythm Signaling Peptides and Proteins - metabolism Circadian rhythms Cloning, Molecular Electrophoresis, Polyacrylamide Gel - methods Escherichia coli - genetics Escherichia coli - metabolism Gel electrophoresis Gene Expression Regulation, Bacterial Genetic Vectors - chemistry Genetic Vectors - metabolism Humanities and Social Sciences Hydrolysis Monomers multidisciplinary Oscillations Phosphorylation Protein Binding Protein Conformation Protein Multimerization Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Rosaniline Dyes - chemistry Science Science (multidisciplinary) Synechococcus - genetics Synechococcus - metabolism |
title | Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20between%20two%20conformational%20states%20of%20KaiC%20is%20induced%20by%20ATP%20hydrolysis%20as%20a%20trigger%20for%20cyanobacterial%20circadian%20oscillation&rft.jtitle=Scientific%20reports&rft.au=Oyama,%20Katsuaki&rft.date=2016-09-01&rft.volume=6&rft.issue=1&rft.spage=32443&rft.epage=32443&rft.pages=32443-32443&rft.artnum=32443&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32443&rft_dat=%3Cproquest_pubme%3E1816629348%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899069403&rft_id=info:pmid/27580682&rfr_iscdi=true |