Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation

The cyanobacterial circadian oscillator can be reconstituted in vitro by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue nati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-09, Vol.6 (1), p.32443-32443, Article 32443
Hauptverfasser: Oyama, Katsuaki, Azai, Chihiro, Nakamura, Kaori, Tanaka, Syun, Terauchi, Kazuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32443
container_issue 1
container_start_page 32443
container_title Scientific reports
container_volume 6
creator Oyama, Katsuaki
Azai, Chihiro
Nakamura, Kaori
Tanaka, Syun
Terauchi, Kazuki
description The cyanobacterial circadian oscillator can be reconstituted in vitro by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an in vitro reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.
doi_str_mv 10.1038/srep32443
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816629348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</originalsourceid><addsrcrecordid>eNplkd9KHDEUxkNRqqgXfYES6I0W1mbyb2ZuCrLUtii0F_Y6ZJIza2Q2WZOMMk_Q1zbr2mWtIZBDvh_fOcmH0IeKnFeENV9ShBWjnLN36JASLmaUUbq3Ux-gk5TuSFmCtrxq36MDWouGyIYeor_z4B8gJhc87iA_AnicHwM2wfchLnUugh5wyjpDwqHHV9rNsUvYeTsasLib8MXNb3w72RiGKRVFl41zdIsFRFxMsJm0D502GaIrXsZFo63THodk3DA89zhG-70eEpy8nEfoz-W3m_mP2fWv7z_nF9czIwjPM-haIyXYrq8lNJbT9apkRwTjfU-AMktJa4TgdSnX97K3pKaEkaoDC-wIfd34rsZuCdaAz1EPahXdUsdJBe3Ua8W7W7UID0oQUgsmi8Hpi0EM9yOkrJYuGSjP8BDGpKqmkpK2jDcF_fQfehfGWL5zTbUtkS0nrFBnG8rEkEqY_XaYiqh1wmqbcGE_7k6_Jf_lWYDPGyAVyZcAdlq-cXsC3JqyLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899069403</pqid></control><display><type>article</type><title>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</title><source>SpringerOpen</source><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Oyama, Katsuaki ; Azai, Chihiro ; Nakamura, Kaori ; Tanaka, Syun ; Terauchi, Kazuki</creator><creatorcontrib>Oyama, Katsuaki ; Azai, Chihiro ; Nakamura, Kaori ; Tanaka, Syun ; Terauchi, Kazuki</creatorcontrib><description>The cyanobacterial circadian oscillator can be reconstituted in vitro by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an in vitro reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32443</identifier><identifier>PMID: 27580682</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/458/1733 ; 631/57/2272/2273 ; 82/16 ; 82/83 ; Adenosine triphosphatase ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Substitution ; ATP ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian Rhythm Signaling Peptides and Proteins - chemistry ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; Circadian rhythms ; Cloning, Molecular ; Electrophoresis, Polyacrylamide Gel - methods ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gel electrophoresis ; Gene Expression Regulation, Bacterial ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Humanities and Social Sciences ; Hydrolysis ; Monomers ; multidisciplinary ; Oscillations ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rosaniline Dyes - chemistry ; Science ; Science (multidisciplinary) ; Synechococcus - genetics ; Synechococcus - metabolism</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.32443-32443, Article 32443</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</citedby><cites>FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27580682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oyama, Katsuaki</creatorcontrib><creatorcontrib>Azai, Chihiro</creatorcontrib><creatorcontrib>Nakamura, Kaori</creatorcontrib><creatorcontrib>Tanaka, Syun</creatorcontrib><creatorcontrib>Terauchi, Kazuki</creatorcontrib><title>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The cyanobacterial circadian oscillator can be reconstituted in vitro by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an in vitro reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.</description><subject>631/337/458/1733</subject><subject>631/57/2272/2273</subject><subject>82/16</subject><subject>82/83</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Substitution</subject><subject>ATP</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - chemistry</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>Circadian rhythms</subject><subject>Cloning, Molecular</subject><subject>Electrophoresis, Polyacrylamide Gel - methods</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gel electrophoresis</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolysis</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Oscillations</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rosaniline Dyes - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkd9KHDEUxkNRqqgXfYES6I0W1mbyb2ZuCrLUtii0F_Y6ZJIza2Q2WZOMMk_Q1zbr2mWtIZBDvh_fOcmH0IeKnFeENV9ShBWjnLN36JASLmaUUbq3Ux-gk5TuSFmCtrxq36MDWouGyIYeor_z4B8gJhc87iA_AnicHwM2wfchLnUugh5wyjpDwqHHV9rNsUvYeTsasLib8MXNb3w72RiGKRVFl41zdIsFRFxMsJm0D502GaIrXsZFo63THodk3DA89zhG-70eEpy8nEfoz-W3m_mP2fWv7z_nF9czIwjPM-haIyXYrq8lNJbT9apkRwTjfU-AMktJa4TgdSnX97K3pKaEkaoDC-wIfd34rsZuCdaAz1EPahXdUsdJBe3Ua8W7W7UID0oQUgsmi8Hpi0EM9yOkrJYuGSjP8BDGpKqmkpK2jDcF_fQfehfGWL5zTbUtkS0nrFBnG8rEkEqY_XaYiqh1wmqbcGE_7k6_Jf_lWYDPGyAVyZcAdlq-cXsC3JqyLQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Oyama, Katsuaki</creator><creator>Azai, Chihiro</creator><creator>Nakamura, Kaori</creator><creator>Tanaka, Syun</creator><creator>Terauchi, Kazuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</title><author>Oyama, Katsuaki ; Azai, Chihiro ; Nakamura, Kaori ; Tanaka, Syun ; Terauchi, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-eb9c66edbf76e8d42222216b0534ff0e23d209c554723d6b056fd0720301bede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/337/458/1733</topic><topic>631/57/2272/2273</topic><topic>82/16</topic><topic>82/83</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Substitution</topic><topic>ATP</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - chemistry</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>Circadian rhythms</topic><topic>Cloning, Molecular</topic><topic>Electrophoresis, Polyacrylamide Gel - methods</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gel electrophoresis</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolysis</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Oscillations</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rosaniline Dyes - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyama, Katsuaki</creatorcontrib><creatorcontrib>Azai, Chihiro</creatorcontrib><creatorcontrib>Nakamura, Kaori</creatorcontrib><creatorcontrib>Tanaka, Syun</creatorcontrib><creatorcontrib>Terauchi, Kazuki</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyama, Katsuaki</au><au>Azai, Chihiro</au><au>Nakamura, Kaori</au><au>Tanaka, Syun</au><au>Terauchi, Kazuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32443</spage><epage>32443</epage><pages>32443-32443</pages><artnum>32443</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The cyanobacterial circadian oscillator can be reconstituted in vitro by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an in vitro reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27580682</pmid><doi>10.1038/srep32443</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.32443-32443, Article 32443
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007536
source SpringerOpen; MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 631/337/458/1733
631/57/2272/2273
82/16
82/83
Adenosine triphosphatase
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Amino Acid Substitution
ATP
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Circadian rhythm
Circadian Rhythm - genetics
Circadian Rhythm Signaling Peptides and Proteins - chemistry
Circadian Rhythm Signaling Peptides and Proteins - genetics
Circadian Rhythm Signaling Peptides and Proteins - metabolism
Circadian rhythms
Cloning, Molecular
Electrophoresis, Polyacrylamide Gel - methods
Escherichia coli - genetics
Escherichia coli - metabolism
Gel electrophoresis
Gene Expression Regulation, Bacterial
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Humanities and Social Sciences
Hydrolysis
Monomers
multidisciplinary
Oscillations
Phosphorylation
Protein Binding
Protein Conformation
Protein Multimerization
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Rosaniline Dyes - chemistry
Science
Science (multidisciplinary)
Synechococcus - genetics
Synechococcus - metabolism
title Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20between%20two%20conformational%20states%20of%20KaiC%20is%20induced%20by%20ATP%20hydrolysis%20as%20a%20trigger%20for%20cyanobacterial%20circadian%20oscillation&rft.jtitle=Scientific%20reports&rft.au=Oyama,%20Katsuaki&rft.date=2016-09-01&rft.volume=6&rft.issue=1&rft.spage=32443&rft.epage=32443&rft.pages=32443-32443&rft.artnum=32443&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32443&rft_dat=%3Cproquest_pubme%3E1816629348%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899069403&rft_id=info:pmid/27580682&rfr_iscdi=true