Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification
In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The curren...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-09, Vol.6 (1), p.32317-32317, Article 32317 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32317 |
---|---|
container_issue | 1 |
container_start_page | 32317 |
container_title | Scientific reports |
container_volume | 6 |
creator | Borgmann, Daniela M. Mayr, Sandra Polin, Helene Schaller, Susanne Dorfer, Viktoria Obritzberger, Lisa Endmayr, Tanja Gabriel, Christian Winkler, Stephan M. Jacak, Jaroslaw |
description | In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes. |
doi_str_mv | 10.1038/srep32317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899057465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</originalsourceid><addsrcrecordid>eNplkUtrGzEUhUVJaUyaRf5AEGSTFNzqOTPaBIIbNwGHQh9rRZaubZmx5Egzhfz7yNgxTqqNLrqfjo7uQeiMkq-U8OZbTrDmjNP6AxowIuSQccaODupjdJrzkpQlmRJUfULHrJYNqTgboMffPsxbwA-xBduXYtz2MUG2EGw59TbFbOP6GZvg8IOxCx8AT8CkUO7hWUz41wJyn_F3fBM6P4eAR63J2c-8NZ2P4TP6ODNthtPdfoL-jm__jO6Gk58_7kc3k6EVvOmGyjLrauWMtLwhxtWGNuCAgyKkcs5JwWrCZU2mXDEhGm5AWM4FraiayorxE3S91V330xW44r9LptXr5FcmPetovH7bCX6h5_GfloTUQskicLkTSPGph9zplS9jaFsTIPZZ04ZWFWsEFQW9eIcuY59C-V6hlCKyFtVG8GpLbWZYUprtzVCiN9HpfXSFPT90vydfgyrAly2QSyvMIR08-Z_aC8QuorY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899057465</pqid></control><display><type>article</type><title>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Borgmann, Daniela M. ; Mayr, Sandra ; Polin, Helene ; Schaller, Susanne ; Dorfer, Viktoria ; Obritzberger, Lisa ; Endmayr, Tanja ; Gabriel, Christian ; Winkler, Stephan M. ; Jacak, Jaroslaw</creator><creatorcontrib>Borgmann, Daniela M. ; Mayr, Sandra ; Polin, Helene ; Schaller, Susanne ; Dorfer, Viktoria ; Obritzberger, Lisa ; Endmayr, Tanja ; Gabriel, Christian ; Winkler, Stephan M. ; Jacak, Jaroslaw</creatorcontrib><description>In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32317</identifier><identifier>PMID: 27580632</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 631/45/56 ; 639/766/747 ; Adsorption ; Antigens ; Artificial intelligence ; D antigen ; Erythrocytes - metabolism ; Fluorescence ; Fluorescence microscopy ; Humanities and Social Sciences ; Humans ; Image processing ; Immunization ; Learning algorithms ; Machine Learning ; Microscopy ; Microscopy, Fluorescence ; multidisciplinary ; Phenotype ; Rh-Hr Blood-Group System - blood ; Rh-Hr Blood-Group System - classification ; Rho(D) Immune Globulin - metabolism ; Science ; Science (multidisciplinary) ; Statistics as Topic</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.32317-32317, Article 32317</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</citedby><cites>FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007495/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007495/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27580632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgmann, Daniela M.</creatorcontrib><creatorcontrib>Mayr, Sandra</creatorcontrib><creatorcontrib>Polin, Helene</creatorcontrib><creatorcontrib>Schaller, Susanne</creatorcontrib><creatorcontrib>Dorfer, Viktoria</creatorcontrib><creatorcontrib>Obritzberger, Lisa</creatorcontrib><creatorcontrib>Endmayr, Tanja</creatorcontrib><creatorcontrib>Gabriel, Christian</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Jacak, Jaroslaw</creatorcontrib><title>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.</description><subject>14/1</subject><subject>631/45/56</subject><subject>639/766/747</subject><subject>Adsorption</subject><subject>Antigens</subject><subject>Artificial intelligence</subject><subject>D antigen</subject><subject>Erythrocytes - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Immunization</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>multidisciplinary</subject><subject>Phenotype</subject><subject>Rh-Hr Blood-Group System - blood</subject><subject>Rh-Hr Blood-Group System - classification</subject><subject>Rho(D) Immune Globulin - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistics as Topic</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtrGzEUhUVJaUyaRf5AEGSTFNzqOTPaBIIbNwGHQh9rRZaubZmx5Egzhfz7yNgxTqqNLrqfjo7uQeiMkq-U8OZbTrDmjNP6AxowIuSQccaODupjdJrzkpQlmRJUfULHrJYNqTgboMffPsxbwA-xBduXYtz2MUG2EGw59TbFbOP6GZvg8IOxCx8AT8CkUO7hWUz41wJyn_F3fBM6P4eAR63J2c-8NZ2P4TP6ODNthtPdfoL-jm__jO6Gk58_7kc3k6EVvOmGyjLrauWMtLwhxtWGNuCAgyKkcs5JwWrCZU2mXDEhGm5AWM4FraiayorxE3S91V330xW44r9LptXr5FcmPetovH7bCX6h5_GfloTUQskicLkTSPGph9zplS9jaFsTIPZZ04ZWFWsEFQW9eIcuY59C-V6hlCKyFtVG8GpLbWZYUprtzVCiN9HpfXSFPT90vydfgyrAly2QSyvMIR08-Z_aC8QuorY</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Borgmann, Daniela M.</creator><creator>Mayr, Sandra</creator><creator>Polin, Helene</creator><creator>Schaller, Susanne</creator><creator>Dorfer, Viktoria</creator><creator>Obritzberger, Lisa</creator><creator>Endmayr, Tanja</creator><creator>Gabriel, Christian</creator><creator>Winkler, Stephan M.</creator><creator>Jacak, Jaroslaw</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</title><author>Borgmann, Daniela M. ; Mayr, Sandra ; Polin, Helene ; Schaller, Susanne ; Dorfer, Viktoria ; Obritzberger, Lisa ; Endmayr, Tanja ; Gabriel, Christian ; Winkler, Stephan M. ; Jacak, Jaroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14/1</topic><topic>631/45/56</topic><topic>639/766/747</topic><topic>Adsorption</topic><topic>Antigens</topic><topic>Artificial intelligence</topic><topic>D antigen</topic><topic>Erythrocytes - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Immunization</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>multidisciplinary</topic><topic>Phenotype</topic><topic>Rh-Hr Blood-Group System - blood</topic><topic>Rh-Hr Blood-Group System - classification</topic><topic>Rho(D) Immune Globulin - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistics as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgmann, Daniela M.</creatorcontrib><creatorcontrib>Mayr, Sandra</creatorcontrib><creatorcontrib>Polin, Helene</creatorcontrib><creatorcontrib>Schaller, Susanne</creatorcontrib><creatorcontrib>Dorfer, Viktoria</creatorcontrib><creatorcontrib>Obritzberger, Lisa</creatorcontrib><creatorcontrib>Endmayr, Tanja</creatorcontrib><creatorcontrib>Gabriel, Christian</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Jacak, Jaroslaw</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgmann, Daniela M.</au><au>Mayr, Sandra</au><au>Polin, Helene</au><au>Schaller, Susanne</au><au>Dorfer, Viktoria</au><au>Obritzberger, Lisa</au><au>Endmayr, Tanja</au><au>Gabriel, Christian</au><au>Winkler, Stephan M.</au><au>Jacak, Jaroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32317</spage><epage>32317</epage><pages>32317-32317</pages><artnum>32317</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27580632</pmid><doi>10.1038/srep32317</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-09, Vol.6 (1), p.32317-32317, Article 32317 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007495 |
source | MEDLINE; Springer Nature OA Free Journals; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 14/1 631/45/56 639/766/747 Adsorption Antigens Artificial intelligence D antigen Erythrocytes - metabolism Fluorescence Fluorescence microscopy Humanities and Social Sciences Humans Image processing Immunization Learning algorithms Machine Learning Microscopy Microscopy, Fluorescence multidisciplinary Phenotype Rh-Hr Blood-Group System - blood Rh-Hr Blood-Group System - classification Rho(D) Immune Globulin - metabolism Science Science (multidisciplinary) Statistics as Topic |
title | Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Molecule%20Fluorescence%20Microscopy%20and%20Machine%20Learning%20for%20Rhesus%20D%20Antigen%20Classification&rft.jtitle=Scientific%20reports&rft.au=Borgmann,%20Daniela%20M.&rft.date=2016-09-01&rft.volume=6&rft.issue=1&rft.spage=32317&rft.epage=32317&rft.pages=32317-32317&rft.artnum=32317&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32317&rft_dat=%3Cproquest_pubme%3E1899057465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899057465&rft_id=info:pmid/27580632&rfr_iscdi=true |