Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification

In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-09, Vol.6 (1), p.32317-32317, Article 32317
Hauptverfasser: Borgmann, Daniela M., Mayr, Sandra, Polin, Helene, Schaller, Susanne, Dorfer, Viktoria, Obritzberger, Lisa, Endmayr, Tanja, Gabriel, Christian, Winkler, Stephan M., Jacak, Jaroslaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32317
container_issue 1
container_start_page 32317
container_title Scientific reports
container_volume 6
creator Borgmann, Daniela M.
Mayr, Sandra
Polin, Helene
Schaller, Susanne
Dorfer, Viktoria
Obritzberger, Lisa
Endmayr, Tanja
Gabriel, Christian
Winkler, Stephan M.
Jacak, Jaroslaw
description In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.
doi_str_mv 10.1038/srep32317
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899057465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</originalsourceid><addsrcrecordid>eNplkUtrGzEUhUVJaUyaRf5AEGSTFNzqOTPaBIIbNwGHQh9rRZaubZmx5Egzhfz7yNgxTqqNLrqfjo7uQeiMkq-U8OZbTrDmjNP6AxowIuSQccaODupjdJrzkpQlmRJUfULHrJYNqTgboMffPsxbwA-xBduXYtz2MUG2EGw59TbFbOP6GZvg8IOxCx8AT8CkUO7hWUz41wJyn_F3fBM6P4eAR63J2c-8NZ2P4TP6ODNthtPdfoL-jm__jO6Gk58_7kc3k6EVvOmGyjLrauWMtLwhxtWGNuCAgyKkcs5JwWrCZU2mXDEhGm5AWM4FraiayorxE3S91V330xW44r9LptXr5FcmPetovH7bCX6h5_GfloTUQskicLkTSPGph9zplS9jaFsTIPZZ04ZWFWsEFQW9eIcuY59C-V6hlCKyFtVG8GpLbWZYUprtzVCiN9HpfXSFPT90vydfgyrAly2QSyvMIR08-Z_aC8QuorY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899057465</pqid></control><display><type>article</type><title>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Borgmann, Daniela M. ; Mayr, Sandra ; Polin, Helene ; Schaller, Susanne ; Dorfer, Viktoria ; Obritzberger, Lisa ; Endmayr, Tanja ; Gabriel, Christian ; Winkler, Stephan M. ; Jacak, Jaroslaw</creator><creatorcontrib>Borgmann, Daniela M. ; Mayr, Sandra ; Polin, Helene ; Schaller, Susanne ; Dorfer, Viktoria ; Obritzberger, Lisa ; Endmayr, Tanja ; Gabriel, Christian ; Winkler, Stephan M. ; Jacak, Jaroslaw</creatorcontrib><description>In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32317</identifier><identifier>PMID: 27580632</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 631/45/56 ; 639/766/747 ; Adsorption ; Antigens ; Artificial intelligence ; D antigen ; Erythrocytes - metabolism ; Fluorescence ; Fluorescence microscopy ; Humanities and Social Sciences ; Humans ; Image processing ; Immunization ; Learning algorithms ; Machine Learning ; Microscopy ; Microscopy, Fluorescence ; multidisciplinary ; Phenotype ; Rh-Hr Blood-Group System - blood ; Rh-Hr Blood-Group System - classification ; Rho(D) Immune Globulin - metabolism ; Science ; Science (multidisciplinary) ; Statistics as Topic</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.32317-32317, Article 32317</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</citedby><cites>FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007495/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007495/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27580632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgmann, Daniela M.</creatorcontrib><creatorcontrib>Mayr, Sandra</creatorcontrib><creatorcontrib>Polin, Helene</creatorcontrib><creatorcontrib>Schaller, Susanne</creatorcontrib><creatorcontrib>Dorfer, Viktoria</creatorcontrib><creatorcontrib>Obritzberger, Lisa</creatorcontrib><creatorcontrib>Endmayr, Tanja</creatorcontrib><creatorcontrib>Gabriel, Christian</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Jacak, Jaroslaw</creatorcontrib><title>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.</description><subject>14/1</subject><subject>631/45/56</subject><subject>639/766/747</subject><subject>Adsorption</subject><subject>Antigens</subject><subject>Artificial intelligence</subject><subject>D antigen</subject><subject>Erythrocytes - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Immunization</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>multidisciplinary</subject><subject>Phenotype</subject><subject>Rh-Hr Blood-Group System - blood</subject><subject>Rh-Hr Blood-Group System - classification</subject><subject>Rho(D) Immune Globulin - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistics as Topic</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtrGzEUhUVJaUyaRf5AEGSTFNzqOTPaBIIbNwGHQh9rRZaubZmx5Egzhfz7yNgxTqqNLrqfjo7uQeiMkq-U8OZbTrDmjNP6AxowIuSQccaODupjdJrzkpQlmRJUfULHrJYNqTgboMffPsxbwA-xBduXYtz2MUG2EGw59TbFbOP6GZvg8IOxCx8AT8CkUO7hWUz41wJyn_F3fBM6P4eAR63J2c-8NZ2P4TP6ODNthtPdfoL-jm__jO6Gk58_7kc3k6EVvOmGyjLrauWMtLwhxtWGNuCAgyKkcs5JwWrCZU2mXDEhGm5AWM4FraiayorxE3S91V330xW44r9LptXr5FcmPetovH7bCX6h5_GfloTUQskicLkTSPGph9zplS9jaFsTIPZZ04ZWFWsEFQW9eIcuY59C-V6hlCKyFtVG8GpLbWZYUprtzVCiN9HpfXSFPT90vydfgyrAly2QSyvMIR08-Z_aC8QuorY</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Borgmann, Daniela M.</creator><creator>Mayr, Sandra</creator><creator>Polin, Helene</creator><creator>Schaller, Susanne</creator><creator>Dorfer, Viktoria</creator><creator>Obritzberger, Lisa</creator><creator>Endmayr, Tanja</creator><creator>Gabriel, Christian</creator><creator>Winkler, Stephan M.</creator><creator>Jacak, Jaroslaw</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</title><author>Borgmann, Daniela M. ; Mayr, Sandra ; Polin, Helene ; Schaller, Susanne ; Dorfer, Viktoria ; Obritzberger, Lisa ; Endmayr, Tanja ; Gabriel, Christian ; Winkler, Stephan M. ; Jacak, Jaroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9c2cd79da5c380ad7a18ede3e9006ddd542703570b3924483ae4c3341619b5623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14/1</topic><topic>631/45/56</topic><topic>639/766/747</topic><topic>Adsorption</topic><topic>Antigens</topic><topic>Artificial intelligence</topic><topic>D antigen</topic><topic>Erythrocytes - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Immunization</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>multidisciplinary</topic><topic>Phenotype</topic><topic>Rh-Hr Blood-Group System - blood</topic><topic>Rh-Hr Blood-Group System - classification</topic><topic>Rho(D) Immune Globulin - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistics as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgmann, Daniela M.</creatorcontrib><creatorcontrib>Mayr, Sandra</creatorcontrib><creatorcontrib>Polin, Helene</creatorcontrib><creatorcontrib>Schaller, Susanne</creatorcontrib><creatorcontrib>Dorfer, Viktoria</creatorcontrib><creatorcontrib>Obritzberger, Lisa</creatorcontrib><creatorcontrib>Endmayr, Tanja</creatorcontrib><creatorcontrib>Gabriel, Christian</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Jacak, Jaroslaw</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgmann, Daniela M.</au><au>Mayr, Sandra</au><au>Polin, Helene</au><au>Schaller, Susanne</au><au>Dorfer, Viktoria</au><au>Obritzberger, Lisa</au><au>Endmayr, Tanja</au><au>Gabriel, Christian</au><au>Winkler, Stephan M.</au><au>Jacak, Jaroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32317</spage><epage>32317</epage><pages>32317-32317</pages><artnum>32317</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27580632</pmid><doi>10.1038/srep32317</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.32317-32317, Article 32317
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007495
source MEDLINE; Springer Nature OA Free Journals; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 14/1
631/45/56
639/766/747
Adsorption
Antigens
Artificial intelligence
D antigen
Erythrocytes - metabolism
Fluorescence
Fluorescence microscopy
Humanities and Social Sciences
Humans
Image processing
Immunization
Learning algorithms
Machine Learning
Microscopy
Microscopy, Fluorescence
multidisciplinary
Phenotype
Rh-Hr Blood-Group System - blood
Rh-Hr Blood-Group System - classification
Rho(D) Immune Globulin - metabolism
Science
Science (multidisciplinary)
Statistics as Topic
title Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Molecule%20Fluorescence%20Microscopy%20and%20Machine%20Learning%20for%20Rhesus%20D%20Antigen%20Classification&rft.jtitle=Scientific%20reports&rft.au=Borgmann,%20Daniela%20M.&rft.date=2016-09-01&rft.volume=6&rft.issue=1&rft.spage=32317&rft.epage=32317&rft.pages=32317-32317&rft.artnum=32317&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32317&rft_dat=%3Cproquest_pubme%3E1899057465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899057465&rft_id=info:pmid/27580632&rfr_iscdi=true