RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation
The activation of retinoic acid-inducible gene 1 (RIG-I), a cytoplasmic innate sensor for viral RNA, is tightly regulated to maintain immune homeostasis properly and prevent excessive inflammatory reactions other than initiation of antiviral innate response to eliminate RNA virus effectively. Posttr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-08, Vol.113 (34), p.9581-9586 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9586 |
---|---|
container_issue | 34 |
container_start_page | 9581 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Wang, Wendie Jiang, Minghong Liu, Shuo Zhang, Shikun Liu, Wei Ma, Yuanwu Zhang, Lianfeng Zhang, Jiyan Cao, Xuetao |
description | The activation of retinoic acid-inducible gene 1 (RIG-I), a cytoplasmic innate sensor for viral RNA, is tightly regulated to maintain immune homeostasis properly and prevent excessive inflammatory reactions other than initiation of antiviral innate response to eliminate RNA virus effectively. Posttranslational modifications, particularly ubiquitination, are crucial for regulation of RIG-I activity. Increasing evidence suggests that E3 ligases play important roles in various cellular processes, including cell proliferation and antiviral innate signaling. Here we identify that E3 ubiquitin ligase RING finger protein 122 (RNF122) directly interacts with mouse RIG-I through MS screening of RIG-I–interacting proteins in RNA virus-infected cells. The transmembrane domain of RNF122 associates with the caspase activation and recruitment domains (CARDs) of RIG-I; this interaction effectively triggers RING finger domain of RNF122 to deliver the Lys-48–linked ubiquitin to the Lys115 and Lys146 residues of RIG-I CARDs and promotes RIG-I degradation, resulting in a marked inhibition of RIG-I downstream signaling. RNF122 is widely expressed in various immune cells, with preferential expression in macrophages. Deficiency of RNF122 selectively increases RIG-I–triggered production of type I IFNs and proinflammatory cytokines in macrophages. RNF122-deficient mice exhibit more resistance against lethal RNA virus infection, with increased production of type I IFNs. Thus, we demonstrate that RNF122 acts as a selective negative regulator of RIG-I–triggered antiviral innate response by targeting CARDs of RIG-I and mediating proteasomal degradation of RIG-I. Our study outlines a way for E3 ligase to regulate innate sensor RIG-I for the control of antiviral innate immunity. |
doi_str_mv | 10.1073/pnas.1604277113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26471500</jstor_id><sourcerecordid>26471500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-e7b44111ad35d2e94a4fc868c1305e9086376489e0cb7b716462ec1d19deb3623</originalsourceid><addsrcrecordid>eNqNkUFvEzEQhS0EoiFw5gSyxIXLth6v115fkKpAS6QKpAjOlnd3Ehwl9mJ7K-Xf4yihBU6cPPJ88zRvHiGvgV0CU_XV6G26BMkEVwqgfkJmwDRUUmj2lMwY46pqBRcX5EVKW8aYblr2nFxw1TCptJgRv_pyA5zTNI1jxJQwUeuzu3fR7mg-jEiX1PmMcY0xeDrGMEx9dqXsDjTbuMHs_IaulrfVki6uVx8TzYHucXA24_l7wE20gz1OvSTP1naX8NX5nZPvN5--LT5Xd19vl4vru6pvBM8Vqk4IALBD3QwctbBi3bey7aFmDWrWylpJ0Wpkfac6BVJIjj0MoAfsasnrOflw0h2nrizTo8_FkBmj29t4MME683fHux9mE-5Nw1jNZVME3p8FYvg5Ycpm71KPu531GKZkoOVK83JD9R8oCBA1b1hB3_2DbsMUfbnEkdLFsSrknFydqD6GlCKuH_YGZo6xm2Ps5jH2MvH2T7sP_O-cC_DmBGxTDvGxL4WCo-VfMyWxOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819111714</pqid></control><display><type>article</type><title>RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Wendie ; Jiang, Minghong ; Liu, Shuo ; Zhang, Shikun ; Liu, Wei ; Ma, Yuanwu ; Zhang, Lianfeng ; Zhang, Jiyan ; Cao, Xuetao</creator><creatorcontrib>Wang, Wendie ; Jiang, Minghong ; Liu, Shuo ; Zhang, Shikun ; Liu, Wei ; Ma, Yuanwu ; Zhang, Lianfeng ; Zhang, Jiyan ; Cao, Xuetao</creatorcontrib><description>The activation of retinoic acid-inducible gene 1 (RIG-I), a cytoplasmic innate sensor for viral RNA, is tightly regulated to maintain immune homeostasis properly and prevent excessive inflammatory reactions other than initiation of antiviral innate response to eliminate RNA virus effectively. Posttranslational modifications, particularly ubiquitination, are crucial for regulation of RIG-I activity. Increasing evidence suggests that E3 ligases play important roles in various cellular processes, including cell proliferation and antiviral innate signaling. Here we identify that E3 ubiquitin ligase RING finger protein 122 (RNF122) directly interacts with mouse RIG-I through MS screening of RIG-I–interacting proteins in RNA virus-infected cells. The transmembrane domain of RNF122 associates with the caspase activation and recruitment domains (CARDs) of RIG-I; this interaction effectively triggers RING finger domain of RNF122 to deliver the Lys-48–linked ubiquitin to the Lys115 and Lys146 residues of RIG-I CARDs and promotes RIG-I degradation, resulting in a marked inhibition of RIG-I downstream signaling. RNF122 is widely expressed in various immune cells, with preferential expression in macrophages. Deficiency of RNF122 selectively increases RIG-I–triggered production of type I IFNs and proinflammatory cytokines in macrophages. RNF122-deficient mice exhibit more resistance against lethal RNA virus infection, with increased production of type I IFNs. Thus, we demonstrate that RNF122 acts as a selective negative regulator of RIG-I–triggered antiviral innate response by targeting CARDs of RIG-I and mediating proteasomal degradation of RIG-I. Our study outlines a way for E3 ligase to regulate innate sensor RIG-I for the control of antiviral innate immunity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1604277113</identifier><identifier>PMID: 27506794</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cytoplasm ; Gene Expression Regulation ; Homeostasis ; Immunity, Innate ; Interferon ; Interferon Type I - antagonists & inhibitors ; Interferon Type I - biosynthesis ; Interferon Type I - immunology ; Macrophages - immunology ; Macrophages - virology ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Mice ; Mice, Knockout ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - immunology ; Proteasome Endopeptidase Complex - metabolism ; Protein Interaction Domains and Motifs ; Proteins ; Proteolysis ; Ribonucleic acid ; RNA ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Sendai virus - growth & development ; Sendai virus - immunology ; Signal Transduction ; Ubiquitin-Protein Ligases - antagonists & inhibitors ; Ubiquitin-Protein Ligases - deficiency ; Ubiquitin-Protein Ligases - genetics ; Vesiculovirus - growth & development ; Vesiculovirus - immunology ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-08, Vol.113 (34), p.9581-9586</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 23, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-e7b44111ad35d2e94a4fc868c1305e9086376489e0cb7b716462ec1d19deb3623</citedby><cites>FETCH-LOGICAL-c542t-e7b44111ad35d2e94a4fc868c1305e9086376489e0cb7b716462ec1d19deb3623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26471500$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26471500$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27506794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wendie</creatorcontrib><creatorcontrib>Jiang, Minghong</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Zhang, Shikun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Ma, Yuanwu</creatorcontrib><creatorcontrib>Zhang, Lianfeng</creatorcontrib><creatorcontrib>Zhang, Jiyan</creatorcontrib><creatorcontrib>Cao, Xuetao</creatorcontrib><title>RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The activation of retinoic acid-inducible gene 1 (RIG-I), a cytoplasmic innate sensor for viral RNA, is tightly regulated to maintain immune homeostasis properly and prevent excessive inflammatory reactions other than initiation of antiviral innate response to eliminate RNA virus effectively. Posttranslational modifications, particularly ubiquitination, are crucial for regulation of RIG-I activity. Increasing evidence suggests that E3 ligases play important roles in various cellular processes, including cell proliferation and antiviral innate signaling. Here we identify that E3 ubiquitin ligase RING finger protein 122 (RNF122) directly interacts with mouse RIG-I through MS screening of RIG-I–interacting proteins in RNA virus-infected cells. The transmembrane domain of RNF122 associates with the caspase activation and recruitment domains (CARDs) of RIG-I; this interaction effectively triggers RING finger domain of RNF122 to deliver the Lys-48–linked ubiquitin to the Lys115 and Lys146 residues of RIG-I CARDs and promotes RIG-I degradation, resulting in a marked inhibition of RIG-I downstream signaling. RNF122 is widely expressed in various immune cells, with preferential expression in macrophages. Deficiency of RNF122 selectively increases RIG-I–triggered production of type I IFNs and proinflammatory cytokines in macrophages. RNF122-deficient mice exhibit more resistance against lethal RNA virus infection, with increased production of type I IFNs. Thus, we demonstrate that RNF122 acts as a selective negative regulator of RIG-I–triggered antiviral innate response by targeting CARDs of RIG-I and mediating proteasomal degradation of RIG-I. Our study outlines a way for E3 ligase to regulate innate sensor RIG-I for the control of antiviral innate immunity.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cytoplasm</subject><subject>Gene Expression Regulation</subject><subject>Homeostasis</subject><subject>Immunity, Innate</subject><subject>Interferon</subject><subject>Interferon Type I - antagonists & inhibitors</subject><subject>Interferon Type I - biosynthesis</subject><subject>Interferon Type I - immunology</subject><subject>Macrophages - immunology</subject><subject>Macrophages - virology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - immunology</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sendai virus - growth & development</subject><subject>Sendai virus - immunology</subject><subject>Signal Transduction</subject><subject>Ubiquitin-Protein Ligases - antagonists & inhibitors</subject><subject>Ubiquitin-Protein Ligases - deficiency</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Vesiculovirus - growth & development</subject><subject>Vesiculovirus - immunology</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFvEzEQhS0EoiFw5gSyxIXLth6v115fkKpAS6QKpAjOlnd3Ehwl9mJ7K-Xf4yihBU6cPPJ88zRvHiGvgV0CU_XV6G26BMkEVwqgfkJmwDRUUmj2lMwY46pqBRcX5EVKW8aYblr2nFxw1TCptJgRv_pyA5zTNI1jxJQwUeuzu3fR7mg-jEiX1PmMcY0xeDrGMEx9dqXsDjTbuMHs_IaulrfVki6uVx8TzYHucXA24_l7wE20gz1OvSTP1naX8NX5nZPvN5--LT5Xd19vl4vru6pvBM8Vqk4IALBD3QwctbBi3bey7aFmDWrWylpJ0Wpkfac6BVJIjj0MoAfsasnrOflw0h2nrizTo8_FkBmj29t4MME683fHux9mE-5Nw1jNZVME3p8FYvg5Ycpm71KPu531GKZkoOVK83JD9R8oCBA1b1hB3_2DbsMUfbnEkdLFsSrknFydqD6GlCKuH_YGZo6xm2Ps5jH2MvH2T7sP_O-cC_DmBGxTDvGxL4WCo-VfMyWxOw</recordid><startdate>20160823</startdate><enddate>20160823</enddate><creator>Wang, Wendie</creator><creator>Jiang, Minghong</creator><creator>Liu, Shuo</creator><creator>Zhang, Shikun</creator><creator>Liu, Wei</creator><creator>Ma, Yuanwu</creator><creator>Zhang, Lianfeng</creator><creator>Zhang, Jiyan</creator><creator>Cao, Xuetao</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160823</creationdate><title>RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation</title><author>Wang, Wendie ; Jiang, Minghong ; Liu, Shuo ; Zhang, Shikun ; Liu, Wei ; Ma, Yuanwu ; Zhang, Lianfeng ; Zhang, Jiyan ; Cao, Xuetao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-e7b44111ad35d2e94a4fc868c1305e9086376489e0cb7b716462ec1d19deb3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cytoplasm</topic><topic>Gene Expression Regulation</topic><topic>Homeostasis</topic><topic>Immunity, Innate</topic><topic>Interferon</topic><topic>Interferon Type I - antagonists & inhibitors</topic><topic>Interferon Type I - biosynthesis</topic><topic>Interferon Type I - immunology</topic><topic>Macrophages - immunology</topic><topic>Macrophages - virology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - immunology</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sendai virus - growth & development</topic><topic>Sendai virus - immunology</topic><topic>Signal Transduction</topic><topic>Ubiquitin-Protein Ligases - antagonists & inhibitors</topic><topic>Ubiquitin-Protein Ligases - deficiency</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Vesiculovirus - growth & development</topic><topic>Vesiculovirus - immunology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wendie</creatorcontrib><creatorcontrib>Jiang, Minghong</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Zhang, Shikun</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Ma, Yuanwu</creatorcontrib><creatorcontrib>Zhang, Lianfeng</creatorcontrib><creatorcontrib>Zhang, Jiyan</creatorcontrib><creatorcontrib>Cao, Xuetao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wendie</au><au>Jiang, Minghong</au><au>Liu, Shuo</au><au>Zhang, Shikun</au><au>Liu, Wei</au><au>Ma, Yuanwu</au><au>Zhang, Lianfeng</au><au>Zhang, Jiyan</au><au>Cao, Xuetao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-08-23</date><risdate>2016</risdate><volume>113</volume><issue>34</issue><spage>9581</spage><epage>9586</epage><pages>9581-9586</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The activation of retinoic acid-inducible gene 1 (RIG-I), a cytoplasmic innate sensor for viral RNA, is tightly regulated to maintain immune homeostasis properly and prevent excessive inflammatory reactions other than initiation of antiviral innate response to eliminate RNA virus effectively. Posttranslational modifications, particularly ubiquitination, are crucial for regulation of RIG-I activity. Increasing evidence suggests that E3 ligases play important roles in various cellular processes, including cell proliferation and antiviral innate signaling. Here we identify that E3 ubiquitin ligase RING finger protein 122 (RNF122) directly interacts with mouse RIG-I through MS screening of RIG-I–interacting proteins in RNA virus-infected cells. The transmembrane domain of RNF122 associates with the caspase activation and recruitment domains (CARDs) of RIG-I; this interaction effectively triggers RING finger domain of RNF122 to deliver the Lys-48–linked ubiquitin to the Lys115 and Lys146 residues of RIG-I CARDs and promotes RIG-I degradation, resulting in a marked inhibition of RIG-I downstream signaling. RNF122 is widely expressed in various immune cells, with preferential expression in macrophages. Deficiency of RNF122 selectively increases RIG-I–triggered production of type I IFNs and proinflammatory cytokines in macrophages. RNF122-deficient mice exhibit more resistance against lethal RNA virus infection, with increased production of type I IFNs. Thus, we demonstrate that RNF122 acts as a selective negative regulator of RIG-I–triggered antiviral innate response by targeting CARDs of RIG-I and mediating proteasomal degradation of RIG-I. Our study outlines a way for E3 ligase to regulate innate sensor RIG-I for the control of antiviral innate immunity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27506794</pmid><doi>10.1073/pnas.1604277113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-08, Vol.113 (34), p.9581-9586 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003265 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cytoplasm Gene Expression Regulation Homeostasis Immunity, Innate Interferon Interferon Type I - antagonists & inhibitors Interferon Type I - biosynthesis Interferon Type I - immunology Macrophages - immunology Macrophages - virology Membrane Proteins - genetics Membrane Proteins - immunology Mice Mice, Knockout Nerve Tissue Proteins - genetics Nerve Tissue Proteins - immunology Proteasome Endopeptidase Complex - metabolism Protein Interaction Domains and Motifs Proteins Proteolysis Ribonucleic acid RNA RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Sendai virus - growth & development Sendai virus - immunology Signal Transduction Ubiquitin-Protein Ligases - antagonists & inhibitors Ubiquitin-Protein Ligases - deficiency Ubiquitin-Protein Ligases - genetics Vesiculovirus - growth & development Vesiculovirus - immunology Viruses |
title | RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T04%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNF122%20suppresses%20antiviral%20type%20I%20interferon%20production%20by%20targeting%20RIG-I%20CARDs%20to%20mediate%20RIG-I%20degradation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Wendie&rft.date=2016-08-23&rft.volume=113&rft.issue=34&rft.spage=9581&rft.epage=9586&rft.pages=9581-9586&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1604277113&rft_dat=%3Cjstor_pubme%3E26471500%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819111714&rft_id=info:pmid/27506794&rft_jstor_id=26471500&rfr_iscdi=true |