The effects of Rpd3 on fly metabolism, health, and longevity

The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental gerontology 2016-12, Vol.86, p.124-128
Hauptverfasser: Woods, Jared K., Rogina, Blanka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue
container_start_page 124
container_title Experimental gerontology
container_volume 86
creator Woods, Jared K.
Rogina, Blanka
description The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology. •HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span.
doi_str_mv 10.1016/j.exger.2016.02.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5002259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0531556516300560</els_id><sourcerecordid>1826659440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</originalsourceid><addsrcrecordid>eNp9kEtr3DAQx0VIaTZJP0Gg6JhD7OphyRakgRKathAolOQs9BjtarGtreVdut--SjcN6aWnYZj_Y_ghdEFJTQmVH9Y1_FrCVLOy1ITVhIojtKBdyyvZUXGMFkRwWgkhxQk6zXlNCJGM07fohEnFWkX4Al0_rABDCODmjFPAPzae4zTi0O_xALOxqY95uMIrMP28usJm9LhP4xJ2cd6fozfB9BnePc8z9Hj3-eH2a3X__cu320_3lWuEmivesI5bxjizIljJVNd2zMqGutC2zLTEB-OtpEGCsFQqx50vTsZV8FJZw8_QzSF3s7UDeAfjPJleb6Y4mGmvk4n638sYV3qZdloQwphQJeDyOWBKP7eQZz3E7KDvzQhpmzXtmJRCNQ0pUn6QuinlPEF4qaFEP3HXa_2Hu37irgnThXtxvX_94YvnL-gi-HgQQOG0i8WeXYTRgY9TYa99iv8t-A36EJTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826659440</pqid></control><display><type>article</type><title>The effects of Rpd3 on fly metabolism, health, and longevity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Woods, Jared K. ; Rogina, Blanka</creator><creatorcontrib>Woods, Jared K. ; Rogina, Blanka</creatorcontrib><description>The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology. •HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span.</description><identifier>ISSN: 0531-5565</identifier><identifier>EISSN: 1873-6815</identifier><identifier>DOI: 10.1016/j.exger.2016.02.015</identifier><identifier>PMID: 26927903</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Aging ; Aging - physiology ; Animals ; Diet ; Dietary restriction ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila - physiology ; Drosophila melanogaster ; Drosophila Proteins - deficiency ; Drosophila Proteins - genetics ; Drosophila Proteins - physiology ; dSir2 ; Epigenesis, Genetic - physiology ; HDAC ; Histone Deacetylase 1 - deficiency ; Histone Deacetylase 1 - genetics ; Histone Deacetylase 1 - physiology ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylases - physiology ; Longevity ; Longevity - physiology ; rpd3 ; Sirtuins - physiology</subject><ispartof>Experimental gerontology, 2016-12, Vol.86, p.124-128</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</citedby><cites>FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0531556516300560$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26927903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Jared K.</creatorcontrib><creatorcontrib>Rogina, Blanka</creatorcontrib><title>The effects of Rpd3 on fly metabolism, health, and longevity</title><title>Experimental gerontology</title><addtitle>Exp Gerontol</addtitle><description>The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology. •HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span.</description><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Diet</subject><subject>Dietary restriction</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila - physiology</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - deficiency</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - physiology</subject><subject>dSir2</subject><subject>Epigenesis, Genetic - physiology</subject><subject>HDAC</subject><subject>Histone Deacetylase 1 - deficiency</subject><subject>Histone Deacetylase 1 - genetics</subject><subject>Histone Deacetylase 1 - physiology</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylases - physiology</subject><subject>Longevity</subject><subject>Longevity - physiology</subject><subject>rpd3</subject><subject>Sirtuins - physiology</subject><issn>0531-5565</issn><issn>1873-6815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAQx0VIaTZJP0Gg6JhD7OphyRakgRKathAolOQs9BjtarGtreVdut--SjcN6aWnYZj_Y_ghdEFJTQmVH9Y1_FrCVLOy1ITVhIojtKBdyyvZUXGMFkRwWgkhxQk6zXlNCJGM07fohEnFWkX4Al0_rABDCODmjFPAPzae4zTi0O_xALOxqY95uMIrMP28usJm9LhP4xJ2cd6fozfB9BnePc8z9Hj3-eH2a3X__cu320_3lWuEmivesI5bxjizIljJVNd2zMqGutC2zLTEB-OtpEGCsFQqx50vTsZV8FJZw8_QzSF3s7UDeAfjPJleb6Y4mGmvk4n638sYV3qZdloQwphQJeDyOWBKP7eQZz3E7KDvzQhpmzXtmJRCNQ0pUn6QuinlPEF4qaFEP3HXa_2Hu37irgnThXtxvX_94YvnL-gi-HgQQOG0i8WeXYTRgY9TYa99iv8t-A36EJTQ</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Woods, Jared K.</creator><creator>Rogina, Blanka</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161215</creationdate><title>The effects of Rpd3 on fly metabolism, health, and longevity</title><author>Woods, Jared K. ; Rogina, Blanka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Diet</topic><topic>Dietary restriction</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila - physiology</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - deficiency</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - physiology</topic><topic>dSir2</topic><topic>Epigenesis, Genetic - physiology</topic><topic>HDAC</topic><topic>Histone Deacetylase 1 - deficiency</topic><topic>Histone Deacetylase 1 - genetics</topic><topic>Histone Deacetylase 1 - physiology</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylases - physiology</topic><topic>Longevity</topic><topic>Longevity - physiology</topic><topic>rpd3</topic><topic>Sirtuins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Jared K.</creatorcontrib><creatorcontrib>Rogina, Blanka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental gerontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Jared K.</au><au>Rogina, Blanka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of Rpd3 on fly metabolism, health, and longevity</atitle><jtitle>Experimental gerontology</jtitle><addtitle>Exp Gerontol</addtitle><date>2016-12-15</date><risdate>2016</risdate><volume>86</volume><spage>124</spage><epage>128</epage><pages>124-128</pages><issn>0531-5565</issn><eissn>1873-6815</eissn><abstract>The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology. •HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>26927903</pmid><doi>10.1016/j.exger.2016.02.015</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0531-5565
ispartof Experimental gerontology, 2016-12, Vol.86, p.124-128
issn 0531-5565
1873-6815
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5002259
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aging
Aging - physiology
Animals
Diet
Dietary restriction
Drosophila - genetics
Drosophila - metabolism
Drosophila - physiology
Drosophila melanogaster
Drosophila Proteins - deficiency
Drosophila Proteins - genetics
Drosophila Proteins - physiology
dSir2
Epigenesis, Genetic - physiology
HDAC
Histone Deacetylase 1 - deficiency
Histone Deacetylase 1 - genetics
Histone Deacetylase 1 - physiology
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylases - physiology
Longevity
Longevity - physiology
rpd3
Sirtuins - physiology
title The effects of Rpd3 on fly metabolism, health, and longevity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20Rpd3%20on%20fly%20metabolism,%20health,%20and%20longevity&rft.jtitle=Experimental%20gerontology&rft.au=Woods,%20Jared%20K.&rft.date=2016-12-15&rft.volume=86&rft.spage=124&rft.epage=128&rft.pages=124-128&rft.issn=0531-5565&rft.eissn=1873-6815&rft_id=info:doi/10.1016/j.exger.2016.02.015&rft_dat=%3Cproquest_pubme%3E1826659440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826659440&rft_id=info:pmid/26927903&rft_els_id=S0531556516300560&rfr_iscdi=true