The effects of Rpd3 on fly metabolism, health, and longevity
The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone d...
Gespeichert in:
Veröffentlicht in: | Experimental gerontology 2016-12, Vol.86, p.124-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | |
container_start_page | 124 |
container_title | Experimental gerontology |
container_volume | 86 |
creator | Woods, Jared K. Rogina, Blanka |
description | The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.
•HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span. |
doi_str_mv | 10.1016/j.exger.2016.02.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5002259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0531556516300560</els_id><sourcerecordid>1826659440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</originalsourceid><addsrcrecordid>eNp9kEtr3DAQx0VIaTZJP0Gg6JhD7OphyRakgRKathAolOQs9BjtarGtreVdut--SjcN6aWnYZj_Y_ghdEFJTQmVH9Y1_FrCVLOy1ITVhIojtKBdyyvZUXGMFkRwWgkhxQk6zXlNCJGM07fohEnFWkX4Al0_rABDCODmjFPAPzae4zTi0O_xALOxqY95uMIrMP28usJm9LhP4xJ2cd6fozfB9BnePc8z9Hj3-eH2a3X__cu320_3lWuEmivesI5bxjizIljJVNd2zMqGutC2zLTEB-OtpEGCsFQqx50vTsZV8FJZw8_QzSF3s7UDeAfjPJleb6Y4mGmvk4n638sYV3qZdloQwphQJeDyOWBKP7eQZz3E7KDvzQhpmzXtmJRCNQ0pUn6QuinlPEF4qaFEP3HXa_2Hu37irgnThXtxvX_94YvnL-gi-HgQQOG0i8WeXYTRgY9TYa99iv8t-A36EJTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826659440</pqid></control><display><type>article</type><title>The effects of Rpd3 on fly metabolism, health, and longevity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Woods, Jared K. ; Rogina, Blanka</creator><creatorcontrib>Woods, Jared K. ; Rogina, Blanka</creatorcontrib><description>The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.
•HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span.</description><identifier>ISSN: 0531-5565</identifier><identifier>EISSN: 1873-6815</identifier><identifier>DOI: 10.1016/j.exger.2016.02.015</identifier><identifier>PMID: 26927903</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Aging ; Aging - physiology ; Animals ; Diet ; Dietary restriction ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila - physiology ; Drosophila melanogaster ; Drosophila Proteins - deficiency ; Drosophila Proteins - genetics ; Drosophila Proteins - physiology ; dSir2 ; Epigenesis, Genetic - physiology ; HDAC ; Histone Deacetylase 1 - deficiency ; Histone Deacetylase 1 - genetics ; Histone Deacetylase 1 - physiology ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylases - physiology ; Longevity ; Longevity - physiology ; rpd3 ; Sirtuins - physiology</subject><ispartof>Experimental gerontology, 2016-12, Vol.86, p.124-128</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</citedby><cites>FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0531556516300560$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26927903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Jared K.</creatorcontrib><creatorcontrib>Rogina, Blanka</creatorcontrib><title>The effects of Rpd3 on fly metabolism, health, and longevity</title><title>Experimental gerontology</title><addtitle>Exp Gerontol</addtitle><description>The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.
•HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span.</description><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Diet</subject><subject>Dietary restriction</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila - physiology</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - deficiency</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - physiology</subject><subject>dSir2</subject><subject>Epigenesis, Genetic - physiology</subject><subject>HDAC</subject><subject>Histone Deacetylase 1 - deficiency</subject><subject>Histone Deacetylase 1 - genetics</subject><subject>Histone Deacetylase 1 - physiology</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylases - physiology</subject><subject>Longevity</subject><subject>Longevity - physiology</subject><subject>rpd3</subject><subject>Sirtuins - physiology</subject><issn>0531-5565</issn><issn>1873-6815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAQx0VIaTZJP0Gg6JhD7OphyRakgRKathAolOQs9BjtarGtreVdut--SjcN6aWnYZj_Y_ghdEFJTQmVH9Y1_FrCVLOy1ITVhIojtKBdyyvZUXGMFkRwWgkhxQk6zXlNCJGM07fohEnFWkX4Al0_rABDCODmjFPAPzae4zTi0O_xALOxqY95uMIrMP28usJm9LhP4xJ2cd6fozfB9BnePc8z9Hj3-eH2a3X__cu320_3lWuEmivesI5bxjizIljJVNd2zMqGutC2zLTEB-OtpEGCsFQqx50vTsZV8FJZw8_QzSF3s7UDeAfjPJleb6Y4mGmvk4n638sYV3qZdloQwphQJeDyOWBKP7eQZz3E7KDvzQhpmzXtmJRCNQ0pUn6QuinlPEF4qaFEP3HXa_2Hu37irgnThXtxvX_94YvnL-gi-HgQQOG0i8WeXYTRgY9TYa99iv8t-A36EJTQ</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Woods, Jared K.</creator><creator>Rogina, Blanka</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161215</creationdate><title>The effects of Rpd3 on fly metabolism, health, and longevity</title><author>Woods, Jared K. ; Rogina, Blanka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-34283b2232b5fb6298782b641cf772a70dfadb61f6e5b169c3cdc45239fd69ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Diet</topic><topic>Dietary restriction</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila - physiology</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - deficiency</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - physiology</topic><topic>dSir2</topic><topic>Epigenesis, Genetic - physiology</topic><topic>HDAC</topic><topic>Histone Deacetylase 1 - deficiency</topic><topic>Histone Deacetylase 1 - genetics</topic><topic>Histone Deacetylase 1 - physiology</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylases - physiology</topic><topic>Longevity</topic><topic>Longevity - physiology</topic><topic>rpd3</topic><topic>Sirtuins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Jared K.</creatorcontrib><creatorcontrib>Rogina, Blanka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental gerontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Jared K.</au><au>Rogina, Blanka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of Rpd3 on fly metabolism, health, and longevity</atitle><jtitle>Experimental gerontology</jtitle><addtitle>Exp Gerontol</addtitle><date>2016-12-15</date><risdate>2016</risdate><volume>86</volume><spage>124</spage><epage>128</epage><pages>124-128</pages><issn>0531-5565</issn><eissn>1873-6815</eissn><abstract>The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.
•HDACs are key epigenetic regulators of chromatin structure.•HDAC1 affect metabolism via acetylation.•Rpd3 reduction extends fly and worm life span.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>26927903</pmid><doi>10.1016/j.exger.2016.02.015</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0531-5565 |
ispartof | Experimental gerontology, 2016-12, Vol.86, p.124-128 |
issn | 0531-5565 1873-6815 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5002259 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aging Aging - physiology Animals Diet Dietary restriction Drosophila - genetics Drosophila - metabolism Drosophila - physiology Drosophila melanogaster Drosophila Proteins - deficiency Drosophila Proteins - genetics Drosophila Proteins - physiology dSir2 Epigenesis, Genetic - physiology HDAC Histone Deacetylase 1 - deficiency Histone Deacetylase 1 - genetics Histone Deacetylase 1 - physiology Histone Deacetylase Inhibitors - pharmacology Histone Deacetylases - physiology Longevity Longevity - physiology rpd3 Sirtuins - physiology |
title | The effects of Rpd3 on fly metabolism, health, and longevity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20Rpd3%20on%20fly%20metabolism,%20health,%20and%20longevity&rft.jtitle=Experimental%20gerontology&rft.au=Woods,%20Jared%20K.&rft.date=2016-12-15&rft.volume=86&rft.spage=124&rft.epage=128&rft.pages=124-128&rft.issn=0531-5565&rft.eissn=1873-6815&rft_id=info:doi/10.1016/j.exger.2016.02.015&rft_dat=%3Cproquest_pubme%3E1826659440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826659440&rft_id=info:pmid/26927903&rft_els_id=S0531556516300560&rfr_iscdi=true |