Sharp Contradiction for Local-Hidden-State Model in Quantum Steering
In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradic...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-08, Vol.6 (1), p.32075-32075, Article 32075 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32075 |
---|---|
container_issue | 1 |
container_start_page | 32075 |
container_title | Scientific reports |
container_volume | 6 |
creator | Chen, Jing-Ling Su, Hong-Yi Xu, Zhen-Peng Pati, Arun Kumar |
description | In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox. |
doi_str_mv | 10.1038/srep32075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5000011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1814682637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-e5615879e9ee28b10bebc83f5c400148a96f4f5d015278707ba068458aad14ec3</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoKtML_4AUvFGhmqRJm94IMj8mTESm1yFNT11Gl9SkFfz3tkzH1NwkkIcn78mL0BHBFwQn4jJ4aBKKM76F9ilmPKYJpdsb5z10GMIC94vTnJF8F-3RjKc05WIf3czmyjfR2NnWq9Lo1jgbVc5HU6dVHU9MWYKNZ61qIXp0JdSRsdFzp2zbLaNZC-CNfTtAO5WqAxx-7yP0enf7Mp7E06f7h_H1NNYcszYGnhIushxyACoKggsotEgqrhnGhAmVpxWreIkJp5nIcFYonArGhVIlYaCTEbpaeZuuWEKpYQhdy8abpfKf0ikjf99YM5dv7kPyYXpCesHpt8C79w5CK5cmaKhrZcF1QRJBWCpommQ9evIHXbjO2368nspFyhjDg_BsRWnvQt9EtQ5DsBzqket6evZ4M_2a_CmjB85XQGiGXwW_8eQ_2xeAdJg4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898644401</pqid></control><display><type>article</type><title>Sharp Contradiction for Local-Hidden-State Model in Quantum Steering</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Jing-Ling ; Su, Hong-Yi ; Xu, Zhen-Peng ; Pati, Arun Kumar</creator><creatorcontrib>Chen, Jing-Ling ; Su, Hong-Yi ; Xu, Zhen-Peng ; Pati, Arun Kumar</creatorcontrib><description>In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32075</identifier><identifier>PMID: 27562658</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1139 ; 639/766/483/481 ; 639/766/483/640 ; Humanities and Social Sciences ; multidisciplinary ; Quantum theory ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2016-08, Vol.6 (1), p.32075-32075, Article 32075</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-e5615879e9ee28b10bebc83f5c400148a96f4f5d015278707ba068458aad14ec3</citedby><cites>FETCH-LOGICAL-c504t-e5615879e9ee28b10bebc83f5c400148a96f4f5d015278707ba068458aad14ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27562658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jing-Ling</creatorcontrib><creatorcontrib>Su, Hong-Yi</creatorcontrib><creatorcontrib>Xu, Zhen-Peng</creatorcontrib><creatorcontrib>Pati, Arun Kumar</creatorcontrib><title>Sharp Contradiction for Local-Hidden-State Model in Quantum Steering</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.</description><subject>639/766/483/1139</subject><subject>639/766/483/481</subject><subject>639/766/483/640</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMoKtML_4AUvFGhmqRJm94IMj8mTESm1yFNT11Gl9SkFfz3tkzH1NwkkIcn78mL0BHBFwQn4jJ4aBKKM76F9ilmPKYJpdsb5z10GMIC94vTnJF8F-3RjKc05WIf3czmyjfR2NnWq9Lo1jgbVc5HU6dVHU9MWYKNZ61qIXp0JdSRsdFzp2zbLaNZC-CNfTtAO5WqAxx-7yP0enf7Mp7E06f7h_H1NNYcszYGnhIushxyACoKggsotEgqrhnGhAmVpxWreIkJp5nIcFYonArGhVIlYaCTEbpaeZuuWEKpYQhdy8abpfKf0ikjf99YM5dv7kPyYXpCesHpt8C79w5CK5cmaKhrZcF1QRJBWCpommQ9evIHXbjO2368nspFyhjDg_BsRWnvQt9EtQ5DsBzqket6evZ4M_2a_CmjB85XQGiGXwW_8eQ_2xeAdJg4</recordid><startdate>20160826</startdate><enddate>20160826</enddate><creator>Chen, Jing-Ling</creator><creator>Su, Hong-Yi</creator><creator>Xu, Zhen-Peng</creator><creator>Pati, Arun Kumar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160826</creationdate><title>Sharp Contradiction for Local-Hidden-State Model in Quantum Steering</title><author>Chen, Jing-Ling ; Su, Hong-Yi ; Xu, Zhen-Peng ; Pati, Arun Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-e5615879e9ee28b10bebc83f5c400148a96f4f5d015278707ba068458aad14ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/483/1139</topic><topic>639/766/483/481</topic><topic>639/766/483/640</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jing-Ling</creatorcontrib><creatorcontrib>Su, Hong-Yi</creatorcontrib><creatorcontrib>Xu, Zhen-Peng</creatorcontrib><creatorcontrib>Pati, Arun Kumar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jing-Ling</au><au>Su, Hong-Yi</au><au>Xu, Zhen-Peng</au><au>Pati, Arun Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp Contradiction for Local-Hidden-State Model in Quantum Steering</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-08-26</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32075</spage><epage>32075</epage><pages>32075-32075</pages><artnum>32075</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27562658</pmid><doi>10.1038/srep32075</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-08, Vol.6 (1), p.32075-32075, Article 32075 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5000011 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/766/483/1139 639/766/483/481 639/766/483/640 Humanities and Social Sciences multidisciplinary Quantum theory Science Science (multidisciplinary) |
title | Sharp Contradiction for Local-Hidden-State Model in Quantum Steering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20Contradiction%20for%20Local-Hidden-State%20Model%20in%20Quantum%20Steering&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Jing-Ling&rft.date=2016-08-26&rft.volume=6&rft.issue=1&rft.spage=32075&rft.epage=32075&rft.pages=32075-32075&rft.artnum=32075&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32075&rft_dat=%3Cproquest_pubme%3E1814682637%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898644401&rft_id=info:pmid/27562658&rfr_iscdi=true |