Vertical variation of mixing within porous sediment beds below turbulent flows

River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2016-05, Vol.52 (5), p.3493-3509
Hauptverfasser: Chandler, I. D., Guymer, I., Pearson, J. M., van Egmond, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3509
container_issue 5
container_start_page 3493
container_title Water resources research
container_volume 52
creator Chandler, I. D.
Guymer, I.
Pearson, J. M.
van Egmond, R.
description River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. Key Point: Sediment‐water exchange, laboratory study, mixing coefficients
doi_str_mv 10.1002/2015WR018274
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4999055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908419335</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6064-14d0eda367b82214dd05b390528c3e09ce3e857ab5e950f38c6f6647e47b6d943</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EokvhxhlF4sKBwPjbviChVfmQqlZaAT1aTjJpXSXxYifd9r_H1ZaqcOhlRmP_9GaeHiGvKXygAOwjAyrPNkAN0-IJWVErRK2t5k_JCkDwmnKrD8iLnC8BqJBKPycHTCsuKYgVOfmFaQ6tH6orn4KfQ5yq2FdjuA7TebUL80WYqm1McclVxi6MOM1Vg10uZYi7al5Sswy3j30Z80vyrPdDxld3_ZD8_HL0Y_2tPj79-n39-bj2CpSoqegAO8-VbgxjZepANtyCZKblCLZFjkZq30i0EnpuWtUrJTQK3ajOCn5IPu11t0szYteWA5If3DaF0acbF31w__5M4cKdxysnrC1rZBF4dyeQ4u8F8-zGkFscBj9h8eqoAaMkMGkL-vY_9DIuaSr2HLVgBLWcy0cpbU3RY0wV6v2ealPMOWF_fzIFdxunexhnwd88tHkP_82vAHwP7MKAN4-KubPNesMYCMH_AL3PqPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798180226</pqid></control><display><type>article</type><title>Vertical variation of mixing within porous sediment beds below turbulent flows</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chandler, I. D. ; Guymer, I. ; Pearson, J. M. ; van Egmond, R.</creator><creatorcontrib>Chandler, I. D. ; Guymer, I. ; Pearson, J. M. ; van Egmond, R.</creatorcontrib><description>River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. Key Point: Sediment‐water exchange, laboratory study, mixing coefficients</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2015WR018274</identifier><identifier>PMID: 27635104</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Aquatic ecosystems ; Bed load ; Coefficient of variation ; Computational fluid dynamics ; Contaminants ; Depth ; Diffusion ; Diffusion rate ; Dye dispersion ; Ecosystems ; Eco‐hydrology ; Estimates ; Exchanging ; Fiber optics ; Fluid flow ; Fluorimeters ; Fluorometers ; Freshwater ; Hydrology ; Instruments and Techniques: Modeling ; Mathematical models ; mixing ; Modelling ; Molecular diffusion ; Mud-water interfaces ; Optical fibers ; Parameterization ; Permeability ; Policy Sciences ; Pollutants ; Pore water ; Regional Planning ; Reynolds number ; Sediment ; Sediment mixing ; Sediment-water interface ; Sediments ; Shear ; Surface Water Quality ; Turbulence ; Water ; Water column ; Water depth ; Water Management ; water‐sediment exchange</subject><ispartof>Water resources research, 2016-05, Vol.52 (5), p.3493-3509</ispartof><rights>2016. The Authors.</rights><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6064-14d0eda367b82214dd05b390528c3e09ce3e857ab5e950f38c6f6647e47b6d943</citedby><cites>FETCH-LOGICAL-a6064-14d0eda367b82214dd05b390528c3e09ce3e857ab5e950f38c6f6647e47b6d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015WR018274$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015WR018274$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,11516,27926,27927,45576,45577,46470,46894</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27635104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandler, I. D.</creatorcontrib><creatorcontrib>Guymer, I.</creatorcontrib><creatorcontrib>Pearson, J. M.</creatorcontrib><creatorcontrib>van Egmond, R.</creatorcontrib><title>Vertical variation of mixing within porous sediment beds below turbulent flows</title><title>Water resources research</title><addtitle>Water Resour Res</addtitle><description>River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. Key Point: Sediment‐water exchange, laboratory study, mixing coefficients</description><subject>Aquatic ecosystems</subject><subject>Bed load</subject><subject>Coefficient of variation</subject><subject>Computational fluid dynamics</subject><subject>Contaminants</subject><subject>Depth</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Dye dispersion</subject><subject>Ecosystems</subject><subject>Eco‐hydrology</subject><subject>Estimates</subject><subject>Exchanging</subject><subject>Fiber optics</subject><subject>Fluid flow</subject><subject>Fluorimeters</subject><subject>Fluorometers</subject><subject>Freshwater</subject><subject>Hydrology</subject><subject>Instruments and Techniques: Modeling</subject><subject>Mathematical models</subject><subject>mixing</subject><subject>Modelling</subject><subject>Molecular diffusion</subject><subject>Mud-water interfaces</subject><subject>Optical fibers</subject><subject>Parameterization</subject><subject>Permeability</subject><subject>Policy Sciences</subject><subject>Pollutants</subject><subject>Pore water</subject><subject>Regional Planning</subject><subject>Reynolds number</subject><subject>Sediment</subject><subject>Sediment mixing</subject><subject>Sediment-water interface</subject><subject>Sediments</subject><subject>Shear</subject><subject>Surface Water Quality</subject><subject>Turbulence</subject><subject>Water</subject><subject>Water column</subject><subject>Water depth</subject><subject>Water Management</subject><subject>water‐sediment exchange</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kc1v1DAQxS0EokvhxhlF4sKBwPjbviChVfmQqlZaAT1aTjJpXSXxYifd9r_H1ZaqcOhlRmP_9GaeHiGvKXygAOwjAyrPNkAN0-IJWVErRK2t5k_JCkDwmnKrD8iLnC8BqJBKPycHTCsuKYgVOfmFaQ6tH6orn4KfQ5yq2FdjuA7TebUL80WYqm1McclVxi6MOM1Vg10uZYi7al5Sswy3j30Z80vyrPdDxld3_ZD8_HL0Y_2tPj79-n39-bj2CpSoqegAO8-VbgxjZepANtyCZKblCLZFjkZq30i0EnpuWtUrJTQK3ajOCn5IPu11t0szYteWA5If3DaF0acbF31w__5M4cKdxysnrC1rZBF4dyeQ4u8F8-zGkFscBj9h8eqoAaMkMGkL-vY_9DIuaSr2HLVgBLWcy0cpbU3RY0wV6v2ealPMOWF_fzIFdxunexhnwd88tHkP_82vAHwP7MKAN4-KubPNesMYCMH_AL3PqPQ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Chandler, I. D.</creator><creator>Guymer, I.</creator><creator>Pearson, J. M.</creator><creator>van Egmond, R.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7TV</scope><scope>5PM</scope></search><sort><creationdate>201605</creationdate><title>Vertical variation of mixing within porous sediment beds below turbulent flows</title><author>Chandler, I. D. ; Guymer, I. ; Pearson, J. M. ; van Egmond, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6064-14d0eda367b82214dd05b390528c3e09ce3e857ab5e950f38c6f6647e47b6d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aquatic ecosystems</topic><topic>Bed load</topic><topic>Coefficient of variation</topic><topic>Computational fluid dynamics</topic><topic>Contaminants</topic><topic>Depth</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Dye dispersion</topic><topic>Ecosystems</topic><topic>Eco‐hydrology</topic><topic>Estimates</topic><topic>Exchanging</topic><topic>Fiber optics</topic><topic>Fluid flow</topic><topic>Fluorimeters</topic><topic>Fluorometers</topic><topic>Freshwater</topic><topic>Hydrology</topic><topic>Instruments and Techniques: Modeling</topic><topic>Mathematical models</topic><topic>mixing</topic><topic>Modelling</topic><topic>Molecular diffusion</topic><topic>Mud-water interfaces</topic><topic>Optical fibers</topic><topic>Parameterization</topic><topic>Permeability</topic><topic>Policy Sciences</topic><topic>Pollutants</topic><topic>Pore water</topic><topic>Regional Planning</topic><topic>Reynolds number</topic><topic>Sediment</topic><topic>Sediment mixing</topic><topic>Sediment-water interface</topic><topic>Sediments</topic><topic>Shear</topic><topic>Surface Water Quality</topic><topic>Turbulence</topic><topic>Water</topic><topic>Water column</topic><topic>Water depth</topic><topic>Water Management</topic><topic>water‐sediment exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandler, I. D.</creatorcontrib><creatorcontrib>Guymer, I.</creatorcontrib><creatorcontrib>Pearson, J. M.</creatorcontrib><creatorcontrib>van Egmond, R.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Pollution Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandler, I. D.</au><au>Guymer, I.</au><au>Pearson, J. M.</au><au>van Egmond, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical variation of mixing within porous sediment beds below turbulent flows</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour Res</addtitle><date>2016-05</date><risdate>2016</risdate><volume>52</volume><issue>5</issue><spage>3493</spage><epage>3509</epage><pages>3493-3509</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. Key Point: Sediment‐water exchange, laboratory study, mixing coefficients</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>27635104</pmid><doi>10.1002/2015WR018274</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2016-05, Vol.52 (5), p.3493-3509
issn 0043-1397
1944-7973
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4999055
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Aquatic ecosystems
Bed load
Coefficient of variation
Computational fluid dynamics
Contaminants
Depth
Diffusion
Diffusion rate
Dye dispersion
Ecosystems
Eco‐hydrology
Estimates
Exchanging
Fiber optics
Fluid flow
Fluorimeters
Fluorometers
Freshwater
Hydrology
Instruments and Techniques: Modeling
Mathematical models
mixing
Modelling
Molecular diffusion
Mud-water interfaces
Optical fibers
Parameterization
Permeability
Policy Sciences
Pollutants
Pore water
Regional Planning
Reynolds number
Sediment
Sediment mixing
Sediment-water interface
Sediments
Shear
Surface Water Quality
Turbulence
Water
Water column
Water depth
Water Management
water‐sediment exchange
title Vertical variation of mixing within porous sediment beds below turbulent flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20variation%20of%20mixing%20within%20porous%20sediment%20beds%20below%20turbulent%20flows&rft.jtitle=Water%20resources%20research&rft.au=Chandler,%20I.%20D.&rft.date=2016-05&rft.volume=52&rft.issue=5&rft.spage=3493&rft.epage=3509&rft.pages=3493-3509&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2015WR018274&rft_dat=%3Cproquest_pubme%3E1908419335%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798180226&rft_id=info:pmid/27635104&rfr_iscdi=true