Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection
CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimen...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-08, Vol.6 (1), p.32048-32048, Article 32048 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32048 |
---|---|
container_issue | 1 |
container_start_page | 32048 |
container_title | Scientific reports |
container_volume | 6 |
creator | KC, R. Srivastava, A. Wilkowski, J. M. Richter, C. E. Shavit, J. A. Burke, D. T. Bielas, S. L. |
description | CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies. |
doi_str_mv | 10.1038/srep32048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4997339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898644298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-33b67ab2d944044f269d237e52437d9dd6ce9ee38e15bfe8434c13d81e0592dd3</originalsourceid><addsrcrecordid>eNplkV1P2zAUhq0JNKqOi_2BKRI3MCkj_khs3yChjkElJBDbrj3XPimunDjECRr_fmYtVQHfHMvn0XOO9SL0GRffcEHFaeyho6Rg4gOapFLmhBKyt3M_QIcxrop0SiIZlh_RAeFlyXlBJ-jPdxjADC60WaizdjQewuAs5LED42pnstnd_Oft3elMR5k1waY3sJn2HjzEbIyuXWbN6AfXefibebfU_2X2RfsJ7dfaRzjc1Cn6_ePi1-wqv765nM_Or3PDqBhyShcV1wtiJWMFYzWppCWUQ0kY5VZaWxmQAFQALhc1CEaZwdQKDEUpibV0is7W3m5cNGANtEOvvep61-j-SQXt1OtO6-7VMjwqJiWnVCbB8UbQh4cR4qAaFw14r1sIY1RYYFZxXjGa0KM36CqMfZu-lygpKsaIFIk6WVOmDzGlVG-XwYV6jk5to0vsl93tt-RLUAn4ugZiarVL6HdGvrP9A4k8o4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898644298</pqid></control><display><type>article</type><title>Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>KC, R. ; Srivastava, A. ; Wilkowski, J. M. ; Richter, C. E. ; Shavit, J. A. ; Burke, D. T. ; Bielas, S. L.</creator><creatorcontrib>KC, R. ; Srivastava, A. ; Wilkowski, J. M. ; Richter, C. E. ; Shavit, J. A. ; Burke, D. T. ; Bielas, S. L.</creatorcontrib><description>CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32048</identifier><identifier>PMID: 27557703</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/71 ; 42/41 ; 631/136/334 ; 631/208/737 ; Alleles ; Animals ; Colonies ; CRISPR ; CRISPR-Cas Systems ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA End-Joining Repair ; DNA repair ; Gene Editing - methods ; Genetic engineering ; Genome editing ; Genomes ; Genotyping ; Genotyping Techniques - methods ; Humanities and Social Sciences ; Laboratories ; Mice, Mutant Strains ; multidisciplinary ; Mutation ; Non-homologous end joining ; Nucleotide sequence ; Nucleotides ; Organisms ; Polymerase chain reaction ; Polymerase Chain Reaction - methods ; Science ; Science (multidisciplinary) ; Zebrafish - genetics</subject><ispartof>Scientific reports, 2016-08, Vol.6 (1), p.32048-32048, Article 32048</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-33b67ab2d944044f269d237e52437d9dd6ce9ee38e15bfe8434c13d81e0592dd3</citedby><cites>FETCH-LOGICAL-c438t-33b67ab2d944044f269d237e52437d9dd6ce9ee38e15bfe8434c13d81e0592dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997339/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997339/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27557703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KC, R.</creatorcontrib><creatorcontrib>Srivastava, A.</creatorcontrib><creatorcontrib>Wilkowski, J. M.</creatorcontrib><creatorcontrib>Richter, C. E.</creatorcontrib><creatorcontrib>Shavit, J. A.</creatorcontrib><creatorcontrib>Burke, D. T.</creatorcontrib><creatorcontrib>Bielas, S. L.</creatorcontrib><title>Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies.</description><subject>38/71</subject><subject>42/41</subject><subject>631/136/334</subject><subject>631/208/737</subject><subject>Alleles</subject><subject>Animals</subject><subject>Colonies</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA End-Joining Repair</subject><subject>DNA repair</subject><subject>Gene Editing - methods</subject><subject>Genetic engineering</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Genotyping Techniques - methods</subject><subject>Humanities and Social Sciences</subject><subject>Laboratories</subject><subject>Mice, Mutant Strains</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Non-homologous end joining</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Organisms</subject><subject>Polymerase chain reaction</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Zebrafish - genetics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1P2zAUhq0JNKqOi_2BKRI3MCkj_khs3yChjkElJBDbrj3XPimunDjECRr_fmYtVQHfHMvn0XOO9SL0GRffcEHFaeyho6Rg4gOapFLmhBKyt3M_QIcxrop0SiIZlh_RAeFlyXlBJ-jPdxjADC60WaizdjQewuAs5LED42pnstnd_Oft3elMR5k1waY3sJn2HjzEbIyuXWbN6AfXefibebfU_2X2RfsJ7dfaRzjc1Cn6_ePi1-wqv765nM_Or3PDqBhyShcV1wtiJWMFYzWppCWUQ0kY5VZaWxmQAFQALhc1CEaZwdQKDEUpibV0is7W3m5cNGANtEOvvep61-j-SQXt1OtO6-7VMjwqJiWnVCbB8UbQh4cR4qAaFw14r1sIY1RYYFZxXjGa0KM36CqMfZu-lygpKsaIFIk6WVOmDzGlVG-XwYV6jk5to0vsl93tt-RLUAn4ugZiarVL6HdGvrP9A4k8o4k</recordid><startdate>20160825</startdate><enddate>20160825</enddate><creator>KC, R.</creator><creator>Srivastava, A.</creator><creator>Wilkowski, J. M.</creator><creator>Richter, C. E.</creator><creator>Shavit, J. A.</creator><creator>Burke, D. T.</creator><creator>Bielas, S. L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160825</creationdate><title>Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection</title><author>KC, R. ; Srivastava, A. ; Wilkowski, J. M. ; Richter, C. E. ; Shavit, J. A. ; Burke, D. T. ; Bielas, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-33b67ab2d944044f269d237e52437d9dd6ce9ee38e15bfe8434c13d81e0592dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>38/71</topic><topic>42/41</topic><topic>631/136/334</topic><topic>631/208/737</topic><topic>Alleles</topic><topic>Animals</topic><topic>Colonies</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA End-Joining Repair</topic><topic>DNA repair</topic><topic>Gene Editing - methods</topic><topic>Genetic engineering</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Genotyping Techniques - methods</topic><topic>Humanities and Social Sciences</topic><topic>Laboratories</topic><topic>Mice, Mutant Strains</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Non-homologous end joining</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Organisms</topic><topic>Polymerase chain reaction</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KC, R.</creatorcontrib><creatorcontrib>Srivastava, A.</creatorcontrib><creatorcontrib>Wilkowski, J. M.</creatorcontrib><creatorcontrib>Richter, C. E.</creatorcontrib><creatorcontrib>Shavit, J. A.</creatorcontrib><creatorcontrib>Burke, D. T.</creatorcontrib><creatorcontrib>Bielas, S. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KC, R.</au><au>Srivastava, A.</au><au>Wilkowski, J. M.</au><au>Richter, C. E.</au><au>Shavit, J. A.</au><au>Burke, D. T.</au><au>Bielas, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-08-25</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32048</spage><epage>32048</epage><pages>32048-32048</pages><artnum>32048</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27557703</pmid><doi>10.1038/srep32048</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-08, Vol.6 (1), p.32048-32048, Article 32048 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4997339 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | 38/71 42/41 631/136/334 631/208/737 Alleles Animals Colonies CRISPR CRISPR-Cas Systems Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded DNA damage DNA End-Joining Repair DNA repair Gene Editing - methods Genetic engineering Genome editing Genomes Genotyping Genotyping Techniques - methods Humanities and Social Sciences Laboratories Mice, Mutant Strains multidisciplinary Mutation Non-homologous end joining Nucleotide sequence Nucleotides Organisms Polymerase chain reaction Polymerase Chain Reaction - methods Science Science (multidisciplinary) Zebrafish - genetics |
title | Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20nucleotide-specific%20CRISPR/Cas9%20modified%20alleles%20using%20multiplex%20ligation%20detection&rft.jtitle=Scientific%20reports&rft.au=KC,%20R.&rft.date=2016-08-25&rft.volume=6&rft.issue=1&rft.spage=32048&rft.epage=32048&rft.pages=32048-32048&rft.artnum=32048&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32048&rft_dat=%3Cproquest_pubme%3E1898644298%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898644298&rft_id=info:pmid/27557703&rfr_iscdi=true |