Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini

Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2016-08, Vol.17 (Suppl 7), p.667-667, Article 667
Hauptverfasser: Anderson, Claire, Khan, Muhammad Adil, Catanzariti, Ann-Maree, Jack, Cameron A, Nemri, Adnane, Lawrence, Gregory J, Upadhyaya, Narayana M, Hardham, Adrienne R, Ellis, Jeffrey G, Dodds, Peter N, Jones, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue Suppl 7
container_start_page 667
container_title BMC genomics
container_volume 17
creator Anderson, Claire
Khan, Muhammad Adil
Catanzariti, Ann-Maree
Jack, Cameron A
Nemri, Adnane
Lawrence, Gregory J
Upadhyaya, Narayana M
Hardham, Adrienne R
Ellis, Jeffrey G
Dodds, Peter N
Jones, David A
description Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.
doi_str_mv 10.1186/s12864-016-3011-9
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4994203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A468820936</galeid><sourcerecordid>A468820936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-67781b189bccfc5b70ab7c036cdf4d18d3affa8dd0e6ca0fc01a6c1c99ca69233</originalsourceid><addsrcrecordid>eNptktFr1TAUxosobk7_AF8k4IuCnTltb5q8CJepczARpj6H0_SkN5omd007dsE_3pY7xy5I4ORw8vs-OOHLspfATwGkeJ-gkKLKOYi85AC5epQdQ1VDXoCoHj_oj7JnKf3iHGpZrJ5mR0W9WvEC6uPszzmF2BPDgH6XXJqbluGNGyZPwRDrKBAzPgYXOjalpSLbuG6TtxSSG3fsav0x0TXzLvzGjliPWxYtGzfErMdbNkxpZHYK3ZTesa_ksd-mOODCu-fZE4s-0Yu7-yT7-fnTj7Mv-eW384uz9WVuVpyPuahrCQ1I1RhjzaqpOTa14aUwra1akG2J1qJsW07CILeGAwoDRimDQhVleZJ92Ptup6an1lAYB_R6O7geh52O6PThS3Ab3cUbXSlVFXwxeHNnMMTridKoe5cMeY-B4pQ0SCgVB1VVM_p6j3boSbtg4-xoFlyvKyFlwVUpZur0P9R8WuqdiYGsm-cHgrcHgpkZ6XbscEpJX3y_OmRhz5ohpjSQvd8UuF6Co_fB0XNw9BIcrWbNq4dfdK_4l5TyL3FGv3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813901944</pqid></control><display><type>article</type><title>Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Anderson, Claire ; Khan, Muhammad Adil ; Catanzariti, Ann-Maree ; Jack, Cameron A ; Nemri, Adnane ; Lawrence, Gregory J ; Upadhyaya, Narayana M ; Hardham, Adrienne R ; Ellis, Jeffrey G ; Dodds, Peter N ; Jones, David A</creator><creatorcontrib>Anderson, Claire ; Khan, Muhammad Adil ; Catanzariti, Ann-Maree ; Jack, Cameron A ; Nemri, Adnane ; Lawrence, Gregory J ; Upadhyaya, Narayana M ; Hardham, Adrienne R ; Ellis, Jeffrey G ; Dodds, Peter N ; Jones, David A</creatorcontrib><description>Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-016-3011-9</identifier><identifier>PMID: 27550217</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Amino Acid Sequence ; Analysis ; Basidiomycota - genetics ; Basidiomycota - pathogenicity ; Chromosome Mapping ; Cloning ; Computational Biology - methods ; DNA sequencing ; Gene Frequency ; Genetic aspects ; Genetic Loci ; Genome, Fungal ; Genomics - methods ; High-Throughput Nucleotide Sequencing ; Loss of Heterozygosity ; Mutation ; Nucleotide sequencing ; Phenotype ; Polymorphism, Single Nucleotide ; Recombination, Genetic ; Rust fungi ; Virulence (Microbiology) ; Virulence - genetics</subject><ispartof>BMC genomics, 2016-08, Vol.17 (Suppl 7), p.667-667, Article 667</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-67781b189bccfc5b70ab7c036cdf4d18d3affa8dd0e6ca0fc01a6c1c99ca69233</citedby><cites>FETCH-LOGICAL-c500t-67781b189bccfc5b70ab7c036cdf4d18d3affa8dd0e6ca0fc01a6c1c99ca69233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994203/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994203/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27550217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Claire</creatorcontrib><creatorcontrib>Khan, Muhammad Adil</creatorcontrib><creatorcontrib>Catanzariti, Ann-Maree</creatorcontrib><creatorcontrib>Jack, Cameron A</creatorcontrib><creatorcontrib>Nemri, Adnane</creatorcontrib><creatorcontrib>Lawrence, Gregory J</creatorcontrib><creatorcontrib>Upadhyaya, Narayana M</creatorcontrib><creatorcontrib>Hardham, Adrienne R</creatorcontrib><creatorcontrib>Ellis, Jeffrey G</creatorcontrib><creatorcontrib>Dodds, Peter N</creatorcontrib><creatorcontrib>Jones, David A</creatorcontrib><title>Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.</description><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Basidiomycota - genetics</subject><subject>Basidiomycota - pathogenicity</subject><subject>Chromosome Mapping</subject><subject>Cloning</subject><subject>Computational Biology - methods</subject><subject>DNA sequencing</subject><subject>Gene Frequency</subject><subject>Genetic aspects</subject><subject>Genetic Loci</subject><subject>Genome, Fungal</subject><subject>Genomics - methods</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Loss of Heterozygosity</subject><subject>Mutation</subject><subject>Nucleotide sequencing</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Recombination, Genetic</subject><subject>Rust fungi</subject><subject>Virulence (Microbiology)</subject><subject>Virulence - genetics</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptktFr1TAUxosobk7_AF8k4IuCnTltb5q8CJepczARpj6H0_SkN5omd007dsE_3pY7xy5I4ORw8vs-OOHLspfATwGkeJ-gkKLKOYi85AC5epQdQ1VDXoCoHj_oj7JnKf3iHGpZrJ5mR0W9WvEC6uPszzmF2BPDgH6XXJqbluGNGyZPwRDrKBAzPgYXOjalpSLbuG6TtxSSG3fsav0x0TXzLvzGjliPWxYtGzfErMdbNkxpZHYK3ZTesa_ksd-mOODCu-fZE4s-0Yu7-yT7-fnTj7Mv-eW384uz9WVuVpyPuahrCQ1I1RhjzaqpOTa14aUwra1akG2J1qJsW07CILeGAwoDRimDQhVleZJ92Ptup6an1lAYB_R6O7geh52O6PThS3Ab3cUbXSlVFXwxeHNnMMTridKoe5cMeY-B4pQ0SCgVB1VVM_p6j3boSbtg4-xoFlyvKyFlwVUpZur0P9R8WuqdiYGsm-cHgrcHgpkZ6XbscEpJX3y_OmRhz5ohpjSQvd8UuF6Co_fB0XNw9BIcrWbNq4dfdK_4l5TyL3FGv3k</recordid><startdate>20160822</startdate><enddate>20160822</enddate><creator>Anderson, Claire</creator><creator>Khan, Muhammad Adil</creator><creator>Catanzariti, Ann-Maree</creator><creator>Jack, Cameron A</creator><creator>Nemri, Adnane</creator><creator>Lawrence, Gregory J</creator><creator>Upadhyaya, Narayana M</creator><creator>Hardham, Adrienne R</creator><creator>Ellis, Jeffrey G</creator><creator>Dodds, Peter N</creator><creator>Jones, David A</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160822</creationdate><title>Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini</title><author>Anderson, Claire ; Khan, Muhammad Adil ; Catanzariti, Ann-Maree ; Jack, Cameron A ; Nemri, Adnane ; Lawrence, Gregory J ; Upadhyaya, Narayana M ; Hardham, Adrienne R ; Ellis, Jeffrey G ; Dodds, Peter N ; Jones, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-67781b189bccfc5b70ab7c036cdf4d18d3affa8dd0e6ca0fc01a6c1c99ca69233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Basidiomycota - genetics</topic><topic>Basidiomycota - pathogenicity</topic><topic>Chromosome Mapping</topic><topic>Cloning</topic><topic>Computational Biology - methods</topic><topic>DNA sequencing</topic><topic>Gene Frequency</topic><topic>Genetic aspects</topic><topic>Genetic Loci</topic><topic>Genome, Fungal</topic><topic>Genomics - methods</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Loss of Heterozygosity</topic><topic>Mutation</topic><topic>Nucleotide sequencing</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Recombination, Genetic</topic><topic>Rust fungi</topic><topic>Virulence (Microbiology)</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Claire</creatorcontrib><creatorcontrib>Khan, Muhammad Adil</creatorcontrib><creatorcontrib>Catanzariti, Ann-Maree</creatorcontrib><creatorcontrib>Jack, Cameron A</creatorcontrib><creatorcontrib>Nemri, Adnane</creatorcontrib><creatorcontrib>Lawrence, Gregory J</creatorcontrib><creatorcontrib>Upadhyaya, Narayana M</creatorcontrib><creatorcontrib>Hardham, Adrienne R</creatorcontrib><creatorcontrib>Ellis, Jeffrey G</creatorcontrib><creatorcontrib>Dodds, Peter N</creatorcontrib><creatorcontrib>Jones, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Claire</au><au>Khan, Muhammad Adil</au><au>Catanzariti, Ann-Maree</au><au>Jack, Cameron A</au><au>Nemri, Adnane</au><au>Lawrence, Gregory J</au><au>Upadhyaya, Narayana M</au><au>Hardham, Adrienne R</au><au>Ellis, Jeffrey G</au><au>Dodds, Peter N</au><au>Jones, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2016-08-22</date><risdate>2016</risdate><volume>17</volume><issue>Suppl 7</issue><spage>667</spage><epage>667</epage><pages>667-667</pages><artnum>667</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27550217</pmid><doi>10.1186/s12864-016-3011-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2016-08, Vol.17 (Suppl 7), p.667-667, Article 667
issn 1471-2164
1471-2164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4994203
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Amino Acid Sequence
Analysis
Basidiomycota - genetics
Basidiomycota - pathogenicity
Chromosome Mapping
Cloning
Computational Biology - methods
DNA sequencing
Gene Frequency
Genetic aspects
Genetic Loci
Genome, Fungal
Genomics - methods
High-Throughput Nucleotide Sequencing
Loss of Heterozygosity
Mutation
Nucleotide sequencing
Phenotype
Polymorphism, Single Nucleotide
Recombination, Genetic
Rust fungi
Virulence (Microbiology)
Virulence - genetics
title Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20analysis%20and%20avirulence%20gene%20cloning%20using%20a%20high-density%20RADseq%20linkage%20map%20of%20the%20flax%20rust%20fungus,%20Melampsora%20lini&rft.jtitle=BMC%20genomics&rft.au=Anderson,%20Claire&rft.date=2016-08-22&rft.volume=17&rft.issue=Suppl%207&rft.spage=667&rft.epage=667&rft.pages=667-667&rft.artnum=667&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-016-3011-9&rft_dat=%3Cgale_pubme%3EA468820936%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813901944&rft_id=info:pmid/27550217&rft_galeid=A468820936&rfr_iscdi=true