Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase

Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-03, Vol.138 (12), p.4249-4259
Hauptverfasser: Gao, Shu-Shan, Duan, Abing, Xu, Wei, Yu, Peiyuan, Hang, Leibniz, Houk, K. N, Tang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4259
container_issue 12
container_start_page 4249
container_title Journal of the American Chemical Society
container_volume 138
creator Gao, Shu-Shan
Duan, Abing
Xu, Wei
Yu, Peiyuan
Hang, Leibniz
Houk, K. N
Tang, Yi
description Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn biosynthetic gene cluster responsible for herqueinone biosynthesis was identified from the genome of Penicillium herquei. A nonreducing polyketide synthase (NR-PKS) PhnA was shown to synthesize the heptaketide backbone and cyclize it into the angular, hemiketal-containing naphtho-γ-pyrone prephenalenone. The product template (PT) domain of PhnA catalyzes only the C4–C9 aldol condensation, which is unprecedented among known PT domains. The transformation of prephenalenone to phenalenone requires an FAD-dependent monooxygenase (FMO) PhnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the γ-pyrone ring simultaneously. Density functional theory calculations provide insights into why the hydroxylated intermediate undergoes an aldol-like phenoxide–ketone cyclization to yield the phenalenone core. This study therefore unveiled new routes and biocatalysts for polyketide cyclization.
doi_str_mv 10.1021/jacs.6b01528
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4988900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812880570</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-e551ebdacdf14418cd6c429b99d80ed040ff7c3b15d54095f5778120c844c0b73</originalsourceid><addsrcrecordid>eNptkcFP2zAUh61paBS2285TjjsQ9uzaiXNBQoECEhNIbGfLsV_adK5d4qQi_etJRcdA2unJ8vd-vyd9hHylcEqB0R9LbeJpVgEVTH4gk3FAKijLPpIJALA0l9n0kBzFuByfnEn6iRyyrMglY3JCVvcL9NqhDx6T--CGP9g1FpNyMK7Z6q4JPil1p92wRZtUQzLr_Vy7t-jD4LuFjphob5OZ05vGpxe4Rm_Rd8nP4EN4GuZjS8TP5KDWLuKX_Twmv2eXv8rr9Pbu6qY8v001p3mXohAUK6uNrSnnVBqbGc6KqiisBLTAoa5zM62osIJDIWqR55IyMJJzA1U-PSZnL7nrvlqhNeMhrXZq3TYr3Q4q6Ea9__HNQs3DRvFCygJgDPi-D2jDY4-xU6smGnROewx9VHSskxJEvkNPXlDThhhbrF9rKKidIbUzpPaGRvzb29Ne4b9K_lXvtpahb0c98f9ZzzvjnQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812880570</pqid></control><display><type>article</type><title>Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Gao, Shu-Shan ; Duan, Abing ; Xu, Wei ; Yu, Peiyuan ; Hang, Leibniz ; Houk, K. N ; Tang, Yi</creator><creatorcontrib>Gao, Shu-Shan ; Duan, Abing ; Xu, Wei ; Yu, Peiyuan ; Hang, Leibniz ; Houk, K. N ; Tang, Yi</creatorcontrib><description>Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn biosynthetic gene cluster responsible for herqueinone biosynthesis was identified from the genome of Penicillium herquei. A nonreducing polyketide synthase (NR-PKS) PhnA was shown to synthesize the heptaketide backbone and cyclize it into the angular, hemiketal-containing naphtho-γ-pyrone prephenalenone. The product template (PT) domain of PhnA catalyzes only the C4–C9 aldol condensation, which is unprecedented among known PT domains. The transformation of prephenalenone to phenalenone requires an FAD-dependent monooxygenase (FMO) PhnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the γ-pyrone ring simultaneously. Density functional theory calculations provide insights into why the hydroxylated intermediate undergoes an aldol-like phenoxide–ketone cyclization to yield the phenalenone core. This study therefore unveiled new routes and biocatalysts for polyketide cyclization.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b01528</identifier><identifier>PMID: 26978228</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Chromatography, Liquid ; Cyclization ; Flavins - metabolism ; Fungi - enzymology ; Fungi - genetics ; Molecular Structure ; Multigene Family ; Oxygenases - metabolism ; Phenalenes - chemistry ; Polyketide Synthases - genetics ; Polyketide Synthases - metabolism</subject><ispartof>Journal of the American Chemical Society, 2016-03, Vol.138 (12), p.4249-4259</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-e551ebdacdf14418cd6c429b99d80ed040ff7c3b15d54095f5778120c844c0b73</citedby><cites>FETCH-LOGICAL-a417t-e551ebdacdf14418cd6c429b99d80ed040ff7c3b15d54095f5778120c844c0b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b01528$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b01528$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26978228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Shu-Shan</creatorcontrib><creatorcontrib>Duan, Abing</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Yu, Peiyuan</creatorcontrib><creatorcontrib>Hang, Leibniz</creatorcontrib><creatorcontrib>Houk, K. N</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><title>Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn biosynthetic gene cluster responsible for herqueinone biosynthesis was identified from the genome of Penicillium herquei. A nonreducing polyketide synthase (NR-PKS) PhnA was shown to synthesize the heptaketide backbone and cyclize it into the angular, hemiketal-containing naphtho-γ-pyrone prephenalenone. The product template (PT) domain of PhnA catalyzes only the C4–C9 aldol condensation, which is unprecedented among known PT domains. The transformation of prephenalenone to phenalenone requires an FAD-dependent monooxygenase (FMO) PhnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the γ-pyrone ring simultaneously. Density functional theory calculations provide insights into why the hydroxylated intermediate undergoes an aldol-like phenoxide–ketone cyclization to yield the phenalenone core. This study therefore unveiled new routes and biocatalysts for polyketide cyclization.</description><subject>Catalysis</subject><subject>Chromatography, Liquid</subject><subject>Cyclization</subject><subject>Flavins - metabolism</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Molecular Structure</subject><subject>Multigene Family</subject><subject>Oxygenases - metabolism</subject><subject>Phenalenes - chemistry</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcFP2zAUh61paBS2285TjjsQ9uzaiXNBQoECEhNIbGfLsV_adK5d4qQi_etJRcdA2unJ8vd-vyd9hHylcEqB0R9LbeJpVgEVTH4gk3FAKijLPpIJALA0l9n0kBzFuByfnEn6iRyyrMglY3JCVvcL9NqhDx6T--CGP9g1FpNyMK7Z6q4JPil1p92wRZtUQzLr_Vy7t-jD4LuFjphob5OZ05vGpxe4Rm_Rd8nP4EN4GuZjS8TP5KDWLuKX_Twmv2eXv8rr9Pbu6qY8v001p3mXohAUK6uNrSnnVBqbGc6KqiisBLTAoa5zM62osIJDIWqR55IyMJJzA1U-PSZnL7nrvlqhNeMhrXZq3TYr3Q4q6Ea9__HNQs3DRvFCygJgDPi-D2jDY4-xU6smGnROewx9VHSskxJEvkNPXlDThhhbrF9rKKidIbUzpPaGRvzb29Ne4b9K_lXvtpahb0c98f9ZzzvjnQU</recordid><startdate>20160330</startdate><enddate>20160330</enddate><creator>Gao, Shu-Shan</creator><creator>Duan, Abing</creator><creator>Xu, Wei</creator><creator>Yu, Peiyuan</creator><creator>Hang, Leibniz</creator><creator>Houk, K. N</creator><creator>Tang, Yi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160330</creationdate><title>Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase</title><author>Gao, Shu-Shan ; Duan, Abing ; Xu, Wei ; Yu, Peiyuan ; Hang, Leibniz ; Houk, K. N ; Tang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-e551ebdacdf14418cd6c429b99d80ed040ff7c3b15d54095f5778120c844c0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catalysis</topic><topic>Chromatography, Liquid</topic><topic>Cyclization</topic><topic>Flavins - metabolism</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Molecular Structure</topic><topic>Multigene Family</topic><topic>Oxygenases - metabolism</topic><topic>Phenalenes - chemistry</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shu-Shan</creatorcontrib><creatorcontrib>Duan, Abing</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Yu, Peiyuan</creatorcontrib><creatorcontrib>Hang, Leibniz</creatorcontrib><creatorcontrib>Houk, K. N</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shu-Shan</au><au>Duan, Abing</au><au>Xu, Wei</au><au>Yu, Peiyuan</au><au>Hang, Leibniz</au><au>Houk, K. N</au><au>Tang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-03-30</date><risdate>2016</risdate><volume>138</volume><issue>12</issue><spage>4249</spage><epage>4259</epage><pages>4249-4259</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn biosynthetic gene cluster responsible for herqueinone biosynthesis was identified from the genome of Penicillium herquei. A nonreducing polyketide synthase (NR-PKS) PhnA was shown to synthesize the heptaketide backbone and cyclize it into the angular, hemiketal-containing naphtho-γ-pyrone prephenalenone. The product template (PT) domain of PhnA catalyzes only the C4–C9 aldol condensation, which is unprecedented among known PT domains. The transformation of prephenalenone to phenalenone requires an FAD-dependent monooxygenase (FMO) PhnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the γ-pyrone ring simultaneously. Density functional theory calculations provide insights into why the hydroxylated intermediate undergoes an aldol-like phenoxide–ketone cyclization to yield the phenalenone core. This study therefore unveiled new routes and biocatalysts for polyketide cyclization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26978228</pmid><doi>10.1021/jacs.6b01528</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-03, Vol.138 (12), p.4249-4259
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4988900
source MEDLINE; American Chemical Society Publications
subjects Catalysis
Chromatography, Liquid
Cyclization
Flavins - metabolism
Fungi - enzymology
Fungi - genetics
Molecular Structure
Multigene Family
Oxygenases - metabolism
Phenalenes - chemistry
Polyketide Synthases - genetics
Polyketide Synthases - metabolism
title Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenalenone%20Polyketide%20Cyclization%20Catalyzed%20by%20Fungal%20Polyketide%20Synthase%20and%20Flavin-Dependent%20Monooxygenase&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Gao,%20Shu-Shan&rft.date=2016-03-30&rft.volume=138&rft.issue=12&rft.spage=4249&rft.epage=4259&rft.pages=4249-4259&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b01528&rft_dat=%3Cproquest_pubme%3E1812880570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812880570&rft_id=info:pmid/26978228&rfr_iscdi=true