Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering

As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2016-07, Vol.2 (7), p.e1600322-e1600322
Hauptverfasser: Feng, Simin, Dos Santos, Maria Cristina, Carvalho, Bruno R, Lv, Ruitao, Li, Qing, Fujisawa, Kazunori, Elías, Ana Laura, Lei, Yu, Perea-López, Nestor, Endo, Morinobu, Pan, Minghu, Pimenta, Marcos A, Terrones, Mauricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1600322
container_issue 7
container_start_page e1600322
container_title Science advances
container_volume 2
creator Feng, Simin
Dos Santos, Maria Cristina
Carvalho, Bruno R
Lv, Ruitao
Li, Qing
Fujisawa, Kazunori
Elías, Ana Laura
Lei, Yu
Perea-López, Nestor
Endo, Morinobu
Pan, Minghu
Pimenta, Marcos A
Terrones, Mauricio
description As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps.
doi_str_mv 10.1126/sciadv.1600322
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4985229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812881839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-59b62b78386bf7f7b4badfe39f71e5802e3937664548b7204622325bbdc1cb5f3</originalsourceid><addsrcrecordid>eNpVUU1LxDAQDaK4i-7Vo_TopWs-mjS9CLL4BaIgCt5Ckk63lTZZk3bBf2-XXZf1NMO8N28-HkIXBM8JoeI62kaX6zkRGDNKj9CUspynlGfy-CCfoFmMXxhjkgnBSXGKJjTnjOKMTdHnR9sHHcHFpm_WkHS-BTu0OiSbmg_JEBu3TF7S0q-gTJZBr2pwkPR18MOyTsDV2tkRedOddkm0uu8hjC3n6KTSbYTZLp6hj_u798Vj-vz68LS4fU5txkWf8sIIanLJpDBVXuUmM7qsgBVVToBLTMeU5UJk4yEmH3cWlDLKjSktsYZX7AzdbHVXg-mgtODGe1q1Ck2nw4_yulH_EdfUaunXKiskp7QYBa52AsF_DxB71TXRQttqB36IikhCpSSSbajzLdUGH2OAaj-GYLVxRG0dUTtHxobLw-X29L__s18ckYoX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812881839</pqid></control><display><type>article</type><title>Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Feng, Simin ; Dos Santos, Maria Cristina ; Carvalho, Bruno R ; Lv, Ruitao ; Li, Qing ; Fujisawa, Kazunori ; Elías, Ana Laura ; Lei, Yu ; Perea-López, Nestor ; Endo, Morinobu ; Pan, Minghu ; Pimenta, Marcos A ; Terrones, Mauricio</creator><creatorcontrib>Feng, Simin ; Dos Santos, Maria Cristina ; Carvalho, Bruno R ; Lv, Ruitao ; Li, Qing ; Fujisawa, Kazunori ; Elías, Ana Laura ; Lei, Yu ; Perea-López, Nestor ; Endo, Morinobu ; Pan, Minghu ; Pimenta, Marcos A ; Terrones, Mauricio</creatorcontrib><description>As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1600322</identifier><identifier>PMID: 27532043</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Gentian Violet - analysis ; Graphite - chemistry ; Limit of Detection ; Materials Engineering ; Methylene Blue - analysis ; Microscopy, Atomic Force ; Nitrogen - chemistry ; Photoelectron Spectroscopy ; Quantum Theory ; Rhodamines - analysis ; SciAdv r-articles ; Spectrophotometry, Ultraviolet ; Spectrum Analysis, Raman</subject><ispartof>Science advances, 2016-07, Vol.2 (7), p.e1600322-e1600322</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-59b62b78386bf7f7b4badfe39f71e5802e3937664548b7204622325bbdc1cb5f3</citedby><cites>FETCH-LOGICAL-c456t-59b62b78386bf7f7b4badfe39f71e5802e3937664548b7204622325bbdc1cb5f3</cites><orcidid>0000-0003-3657-8560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985229/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985229/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27532043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Simin</creatorcontrib><creatorcontrib>Dos Santos, Maria Cristina</creatorcontrib><creatorcontrib>Carvalho, Bruno R</creatorcontrib><creatorcontrib>Lv, Ruitao</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Fujisawa, Kazunori</creatorcontrib><creatorcontrib>Elías, Ana Laura</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Perea-López, Nestor</creatorcontrib><creatorcontrib>Endo, Morinobu</creatorcontrib><creatorcontrib>Pan, Minghu</creatorcontrib><creatorcontrib>Pimenta, Marcos A</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><title>Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps.</description><subject>Gentian Violet - analysis</subject><subject>Graphite - chemistry</subject><subject>Limit of Detection</subject><subject>Materials Engineering</subject><subject>Methylene Blue - analysis</subject><subject>Microscopy, Atomic Force</subject><subject>Nitrogen - chemistry</subject><subject>Photoelectron Spectroscopy</subject><subject>Quantum Theory</subject><subject>Rhodamines - analysis</subject><subject>SciAdv r-articles</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Spectrum Analysis, Raman</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1LxDAQDaK4i-7Vo_TopWs-mjS9CLL4BaIgCt5Ckk63lTZZk3bBf2-XXZf1NMO8N28-HkIXBM8JoeI62kaX6zkRGDNKj9CUspynlGfy-CCfoFmMXxhjkgnBSXGKJjTnjOKMTdHnR9sHHcHFpm_WkHS-BTu0OiSbmg_JEBu3TF7S0q-gTJZBr2pwkPR18MOyTsDV2tkRedOddkm0uu8hjC3n6KTSbYTZLp6hj_u798Vj-vz68LS4fU5txkWf8sIIanLJpDBVXuUmM7qsgBVVToBLTMeU5UJk4yEmH3cWlDLKjSktsYZX7AzdbHVXg-mgtODGe1q1Ck2nw4_yulH_EdfUaunXKiskp7QYBa52AsF_DxB71TXRQttqB36IikhCpSSSbajzLdUGH2OAaj-GYLVxRG0dUTtHxobLw-X29L__s18ckYoX</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Feng, Simin</creator><creator>Dos Santos, Maria Cristina</creator><creator>Carvalho, Bruno R</creator><creator>Lv, Ruitao</creator><creator>Li, Qing</creator><creator>Fujisawa, Kazunori</creator><creator>Elías, Ana Laura</creator><creator>Lei, Yu</creator><creator>Perea-López, Nestor</creator><creator>Endo, Morinobu</creator><creator>Pan, Minghu</creator><creator>Pimenta, Marcos A</creator><creator>Terrones, Mauricio</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3657-8560</orcidid></search><sort><creationdate>20160701</creationdate><title>Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering</title><author>Feng, Simin ; Dos Santos, Maria Cristina ; Carvalho, Bruno R ; Lv, Ruitao ; Li, Qing ; Fujisawa, Kazunori ; Elías, Ana Laura ; Lei, Yu ; Perea-López, Nestor ; Endo, Morinobu ; Pan, Minghu ; Pimenta, Marcos A ; Terrones, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-59b62b78386bf7f7b4badfe39f71e5802e3937664548b7204622325bbdc1cb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Gentian Violet - analysis</topic><topic>Graphite - chemistry</topic><topic>Limit of Detection</topic><topic>Materials Engineering</topic><topic>Methylene Blue - analysis</topic><topic>Microscopy, Atomic Force</topic><topic>Nitrogen - chemistry</topic><topic>Photoelectron Spectroscopy</topic><topic>Quantum Theory</topic><topic>Rhodamines - analysis</topic><topic>SciAdv r-articles</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Spectrum Analysis, Raman</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Simin</creatorcontrib><creatorcontrib>Dos Santos, Maria Cristina</creatorcontrib><creatorcontrib>Carvalho, Bruno R</creatorcontrib><creatorcontrib>Lv, Ruitao</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Fujisawa, Kazunori</creatorcontrib><creatorcontrib>Elías, Ana Laura</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Perea-López, Nestor</creatorcontrib><creatorcontrib>Endo, Morinobu</creatorcontrib><creatorcontrib>Pan, Minghu</creatorcontrib><creatorcontrib>Pimenta, Marcos A</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Simin</au><au>Dos Santos, Maria Cristina</au><au>Carvalho, Bruno R</au><au>Lv, Ruitao</au><au>Li, Qing</au><au>Fujisawa, Kazunori</au><au>Elías, Ana Laura</au><au>Lei, Yu</au><au>Perea-López, Nestor</au><au>Endo, Morinobu</au><au>Pan, Minghu</au><au>Pimenta, Marcos A</au><au>Terrones, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>2</volume><issue>7</issue><spage>e1600322</spage><epage>e1600322</epage><pages>e1600322-e1600322</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27532043</pmid><doi>10.1126/sciadv.1600322</doi><orcidid>https://orcid.org/0000-0003-3657-8560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2016-07, Vol.2 (7), p.e1600322-e1600322
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4985229
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Gentian Violet - analysis
Graphite - chemistry
Limit of Detection
Materials Engineering
Methylene Blue - analysis
Microscopy, Atomic Force
Nitrogen - chemistry
Photoelectron Spectroscopy
Quantum Theory
Rhodamines - analysis
SciAdv r-articles
Spectrophotometry, Ultraviolet
Spectrum Analysis, Raman
title Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20molecular%20sensor%20using%20N-doped%20graphene%20through%20enhanced%20Raman%20scattering&rft.jtitle=Science%20advances&rft.au=Feng,%20Simin&rft.date=2016-07-01&rft.volume=2&rft.issue=7&rft.spage=e1600322&rft.epage=e1600322&rft.pages=e1600322-e1600322&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1600322&rft_dat=%3Cproquest_pubme%3E1812881839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812881839&rft_id=info:pmid/27532043&rfr_iscdi=true