Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study
The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses. A 5 × 5 × 5 mm(3) u...
Gespeichert in:
Veröffentlicht in: | British journal of radiology 2016-01, Vol.89 (1058), p.20150527-20150527 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20150527 |
---|---|
container_issue | 1058 |
container_start_page | 20150527 |
container_title | British journal of radiology |
container_volume | 89 |
creator | Choi, Se Y Ahn, Seung H Choi, Jae D Kim, Jung H Lee, Byoung-Il Kim, Jeong-In Park, Sung B |
description | The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses.
A 5 × 5 × 5 mm(3) uric acid stone was placed in a physical human phantom at the level of the pelvis. 3 tube voltages (120, 100 and 80 kV) and 4 current-time products (100, 70, 30 and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with FBP, statistical IR (Levels 5-7) and knowledge-based IMR (soft-tissue Levels 1-3). The radiation dose, objective image quality and signal-to-noise ratio (SNR) were evaluated, and subjective assessments were performed.
The effective doses ranged from 0.095 to 2.621 mSv. Knowledge-based IMR showed better objective image noise and SNR than did FBP and statistical IR. The subjective image noise of FBP was worse than that of statistical IR and knowledge-based IMR. The subjective assessment scores deteriorated after a break point of 100 kV and 30 mAs.
At the setting of 100 kV and 30 mAs, the radiation dose can be decreased by approximately 84% while keeping the subjective image assessment.
Patients with urolithiasis can be evaluated with ultralow-dose non-enhanced CT using a knowledge-based IMR algorithm at a substantially reduced radiation dose with the imaging quality preserved, thereby minimizing the risks of radiation exposure while providing clinically relevant diagnostic benefits for patients. |
doi_str_mv | 10.1259/bjr.20150527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4985200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760913330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-1395d5e40c3e713848568d66dcff92fc2c26fd0437d316ba087619cfc58793d43</originalsourceid><addsrcrecordid>eNplks1u1DAURi0EokNhxxp52ZGa4p84TlhUgoFCpSJQVSR2lmM7M54mdrCdonlhngOnnRYQG19d-dxzLesD4CVGJ5iw5nW7DScEYYYY4Y_AAvOyLuoafX8MFgghXmBSswPwLMbt3LIGPQUHpGKcs5IswK_3JpkwWCeT9Q76Dvox2UH2MB9r69YwmpRyjbDzAU7B9zZtrIw2wtUVnOKMdLbPEqNhK9U1HIPfGnWrOzp793V5DGPK9pismrWZzN2NgcEo72IK0549v1xC6TS8dv5nb_TaFK2MWfpnYvDa9P_Pfb5cvoESjptdvF2xmQbpcitd8kNePundc_Ckk300L_b1EHw7-3C1-lRcfPl4vnp7UaiSoVRg2jDNTIkUNRzTuqxZVeuq0qrrGtIpokjVaVRSrimuWolqXuFGdYrVvKG6pIfg9M47Tu1gtDIuBdmLMeTfDDvhpRX_3ji7EWt_I8qmZgShLDjaC4L_MZmYxGCjMn0vnfFTFJhXqMGU0hk9vkNV8DEG0z2swUjM0RA5GuI-Ghl_9ffTHuD7LNDfQy-7fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760913330</pqid></control><display><type>article</type><title>Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Choi, Se Y ; Ahn, Seung H ; Choi, Jae D ; Kim, Jung H ; Lee, Byoung-Il ; Kim, Jeong-In ; Park, Sung B</creator><creatorcontrib>Choi, Se Y ; Ahn, Seung H ; Choi, Jae D ; Kim, Jung H ; Lee, Byoung-Il ; Kim, Jeong-In ; Park, Sung B</creatorcontrib><description>The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses.
A 5 × 5 × 5 mm(3) uric acid stone was placed in a physical human phantom at the level of the pelvis. 3 tube voltages (120, 100 and 80 kV) and 4 current-time products (100, 70, 30 and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with FBP, statistical IR (Levels 5-7) and knowledge-based IMR (soft-tissue Levels 1-3). The radiation dose, objective image quality and signal-to-noise ratio (SNR) were evaluated, and subjective assessments were performed.
The effective doses ranged from 0.095 to 2.621 mSv. Knowledge-based IMR showed better objective image noise and SNR than did FBP and statistical IR. The subjective image noise of FBP was worse than that of statistical IR and knowledge-based IMR. The subjective assessment scores deteriorated after a break point of 100 kV and 30 mAs.
At the setting of 100 kV and 30 mAs, the radiation dose can be decreased by approximately 84% while keeping the subjective image assessment.
Patients with urolithiasis can be evaluated with ultralow-dose non-enhanced CT using a knowledge-based IMR algorithm at a substantially reduced radiation dose with the imaging quality preserved, thereby minimizing the risks of radiation exposure while providing clinically relevant diagnostic benefits for patients.</description><identifier>ISSN: 0007-1285</identifier><identifier>EISSN: 1748-880X</identifier><identifier>DOI: 10.1259/bjr.20150527</identifier><identifier>PMID: 26577542</identifier><language>eng</language><publisher>England: The British Institute of Radiology</publisher><subject>Algorithms ; Humans ; Phantoms, Imaging ; Radiation Dosage ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods ; Urography - instrumentation ; Urography - methods ; Urolithiasis - diagnostic imaging</subject><ispartof>British journal of radiology, 2016-01, Vol.89 (1058), p.20150527-20150527</ispartof><rights>2015 The Authors. Published by the British Institute of Radiology 2015 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-1395d5e40c3e713848568d66dcff92fc2c26fd0437d316ba087619cfc58793d43</citedby><cites>FETCH-LOGICAL-c450t-1395d5e40c3e713848568d66dcff92fc2c26fd0437d316ba087619cfc58793d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26577542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Se Y</creatorcontrib><creatorcontrib>Ahn, Seung H</creatorcontrib><creatorcontrib>Choi, Jae D</creatorcontrib><creatorcontrib>Kim, Jung H</creatorcontrib><creatorcontrib>Lee, Byoung-Il</creatorcontrib><creatorcontrib>Kim, Jeong-In</creatorcontrib><creatorcontrib>Park, Sung B</creatorcontrib><title>Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study</title><title>British journal of radiology</title><addtitle>Br J Radiol</addtitle><description>The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses.
A 5 × 5 × 5 mm(3) uric acid stone was placed in a physical human phantom at the level of the pelvis. 3 tube voltages (120, 100 and 80 kV) and 4 current-time products (100, 70, 30 and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with FBP, statistical IR (Levels 5-7) and knowledge-based IMR (soft-tissue Levels 1-3). The radiation dose, objective image quality and signal-to-noise ratio (SNR) were evaluated, and subjective assessments were performed.
The effective doses ranged from 0.095 to 2.621 mSv. Knowledge-based IMR showed better objective image noise and SNR than did FBP and statistical IR. The subjective image noise of FBP was worse than that of statistical IR and knowledge-based IMR. The subjective assessment scores deteriorated after a break point of 100 kV and 30 mAs.
At the setting of 100 kV and 30 mAs, the radiation dose can be decreased by approximately 84% while keeping the subjective image assessment.
Patients with urolithiasis can be evaluated with ultralow-dose non-enhanced CT using a knowledge-based IMR algorithm at a substantially reduced radiation dose with the imaging quality preserved, thereby minimizing the risks of radiation exposure while providing clinically relevant diagnostic benefits for patients.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Phantoms, Imaging</subject><subject>Radiation Dosage</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Urography - instrumentation</subject><subject>Urography - methods</subject><subject>Urolithiasis - diagnostic imaging</subject><issn>0007-1285</issn><issn>1748-880X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplks1u1DAURi0EokNhxxp52ZGa4p84TlhUgoFCpSJQVSR2lmM7M54mdrCdonlhngOnnRYQG19d-dxzLesD4CVGJ5iw5nW7DScEYYYY4Y_AAvOyLuoafX8MFgghXmBSswPwLMbt3LIGPQUHpGKcs5IswK_3JpkwWCeT9Q76Dvox2UH2MB9r69YwmpRyjbDzAU7B9zZtrIw2wtUVnOKMdLbPEqNhK9U1HIPfGnWrOzp793V5DGPK9pismrWZzN2NgcEo72IK0549v1xC6TS8dv5nb_TaFK2MWfpnYvDa9P_Pfb5cvoESjptdvF2xmQbpcitd8kNePundc_Ckk300L_b1EHw7-3C1-lRcfPl4vnp7UaiSoVRg2jDNTIkUNRzTuqxZVeuq0qrrGtIpokjVaVRSrimuWolqXuFGdYrVvKG6pIfg9M47Tu1gtDIuBdmLMeTfDDvhpRX_3ji7EWt_I8qmZgShLDjaC4L_MZmYxGCjMn0vnfFTFJhXqMGU0hk9vkNV8DEG0z2swUjM0RA5GuI-Ghl_9ffTHuD7LNDfQy-7fg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Choi, Se Y</creator><creator>Ahn, Seung H</creator><creator>Choi, Jae D</creator><creator>Kim, Jung H</creator><creator>Lee, Byoung-Il</creator><creator>Kim, Jeong-In</creator><creator>Park, Sung B</creator><general>The British Institute of Radiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study</title><author>Choi, Se Y ; Ahn, Seung H ; Choi, Jae D ; Kim, Jung H ; Lee, Byoung-Il ; Kim, Jeong-In ; Park, Sung B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-1395d5e40c3e713848568d66dcff92fc2c26fd0437d316ba087619cfc58793d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Phantoms, Imaging</topic><topic>Radiation Dosage</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Urography - instrumentation</topic><topic>Urography - methods</topic><topic>Urolithiasis - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Se Y</creatorcontrib><creatorcontrib>Ahn, Seung H</creatorcontrib><creatorcontrib>Choi, Jae D</creatorcontrib><creatorcontrib>Kim, Jung H</creatorcontrib><creatorcontrib>Lee, Byoung-Il</creatorcontrib><creatorcontrib>Kim, Jeong-In</creatorcontrib><creatorcontrib>Park, Sung B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Se Y</au><au>Ahn, Seung H</au><au>Choi, Jae D</au><au>Kim, Jung H</au><au>Lee, Byoung-Il</au><au>Kim, Jeong-In</au><au>Park, Sung B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study</atitle><jtitle>British journal of radiology</jtitle><addtitle>Br J Radiol</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>89</volume><issue>1058</issue><spage>20150527</spage><epage>20150527</epage><pages>20150527-20150527</pages><issn>0007-1285</issn><eissn>1748-880X</eissn><abstract>The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses.
A 5 × 5 × 5 mm(3) uric acid stone was placed in a physical human phantom at the level of the pelvis. 3 tube voltages (120, 100 and 80 kV) and 4 current-time products (100, 70, 30 and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with FBP, statistical IR (Levels 5-7) and knowledge-based IMR (soft-tissue Levels 1-3). The radiation dose, objective image quality and signal-to-noise ratio (SNR) were evaluated, and subjective assessments were performed.
The effective doses ranged from 0.095 to 2.621 mSv. Knowledge-based IMR showed better objective image noise and SNR than did FBP and statistical IR. The subjective image noise of FBP was worse than that of statistical IR and knowledge-based IMR. The subjective assessment scores deteriorated after a break point of 100 kV and 30 mAs.
At the setting of 100 kV and 30 mAs, the radiation dose can be decreased by approximately 84% while keeping the subjective image assessment.
Patients with urolithiasis can be evaluated with ultralow-dose non-enhanced CT using a knowledge-based IMR algorithm at a substantially reduced radiation dose with the imaging quality preserved, thereby minimizing the risks of radiation exposure while providing clinically relevant diagnostic benefits for patients.</abstract><cop>England</cop><pub>The British Institute of Radiology</pub><pmid>26577542</pmid><doi>10.1259/bjr.20150527</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1285 |
ispartof | British journal of radiology, 2016-01, Vol.89 (1058), p.20150527-20150527 |
issn | 0007-1285 1748-880X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4985200 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Humans Phantoms, Imaging Radiation Dosage Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - instrumentation Tomography, X-Ray Computed - methods Urography - instrumentation Urography - methods Urolithiasis - diagnostic imaging |
title | Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20optimal%20imaging%20settings%20for%20urolithiasis%20CT%20using%20filtered%20back%20projection%20(FBP),%20statistical%20iterative%20reconstruction%20(IR)%20and%20knowledge-based%20iterative%20model%20reconstruction%20(IMR):%20a%20physical%20human%20phantom%20study&rft.jtitle=British%20journal%20of%20radiology&rft.au=Choi,%20Se%20Y&rft.date=2016-01-01&rft.volume=89&rft.issue=1058&rft.spage=20150527&rft.epage=20150527&rft.pages=20150527-20150527&rft.issn=0007-1285&rft.eissn=1748-880X&rft_id=info:doi/10.1259/bjr.20150527&rft_dat=%3Cproquest_pubme%3E1760913330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760913330&rft_id=info:pmid/26577542&rfr_iscdi=true |