High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize

CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. We optimized and introduced the multiplex gene editing strategy based on the tRNA-proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC biotechnology 2016-08, Vol.16 (1), p.58-58, Article 58
Hauptverfasser: Qi, Weiwei, Zhu, Tong, Tian, Zhongrui, Li, Chaobin, Zhang, Wei, Song, Rentao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 58
container_title BMC biotechnology
container_volume 16
creator Qi, Weiwei
Zhu, Tong
Tian, Zhongrui
Li, Chaobin
Zhang, Wei
Song, Rentao
description CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.
doi_str_mv 10.1186/s12896-016-0289-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4982333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A468818555</galeid><sourcerecordid>A468818555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-69017c15c28c5b2cb6f48af6827dddaa915c5d07330c0738fb89b1690317804a3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS1ERduBB2CDIrGhi7S2EzvOBmk0onTUilZTYGs5zk3GVeJMY6dqeHocppQOQqK2_CPf71xd2wehtwQfEyL4iSNU5DzGJIywi-kLdEDSjMY8Y_jlk_0-OnTuBmOSCcxfoX2aMcK4SA6QOzP1OoaqMtqA1WO0WC2vr1YnC-XyqB0abzYN3Ec1WIigNN7YOhrcNPs1RHUzahMifvVlHm_6ToP7FXOj89DGhXJQRs73ykM9RsZGrTI_4DXaq1Tj4M3DOkPfTj99XZzFF5efl4v5Rax5znzM81CvJkxToVlBdcGrVKiKC5qVZalUHkKsxFmSYB1mURUiL0hQJdM1U5XM0Mdt3s1QtFBqsKGSRm5606p-lJ0ycjdizVrW3Z1Mc0GT0Gbow0OCvrsdwHnZGqehaZSFbnCSYpFiLljK_4sSQUiCMQuFztD7v9CbbuhteImJyjDliRB_qFo1II2tulCinpLKecqFIIIxFqjjf1Chl9Aa3VmoTDjfERztCALj4d7XanBOnl8tn80ur1fPZy-_77Jky-q-c66H6vFLCJaTseXW2DIYW07GljRo3j39y0fFbycnPwFWoe9-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1817026388</pqid></control><display><type>article</type><title>High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Qi, Weiwei ; Zhu, Tong ; Tian, Zhongrui ; Li, Chaobin ; Zhang, Wei ; Song, Rentao</creator><creatorcontrib>Qi, Weiwei ; Zhu, Tong ; Tian, Zhongrui ; Li, Chaobin ; Zhang, Wei ; Song, Rentao</creatorcontrib><description>CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.</description><identifier>ISSN: 1472-6750</identifier><identifier>EISSN: 1472-6750</identifier><identifier>DOI: 10.1186/s12896-016-0289-2</identifier><identifier>PMID: 27515683</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>breeding ; Clustered Regularly Interspaced Short Palindromic Repeats ; Corn ; CRISPR-Associated Proteins ; gene editing ; Gene Editing - methods ; Gene mutations ; Genes ; Genes, Plant - genetics ; Genetic aspects ; Glycine - genetics ; Methodology ; Methods ; mutagenesis ; Mutation ; non-coding RNA ; Observations ; Oryza sativa ; Physiological aspects ; Plant Proteins - genetics ; Plants, Genetically Modified - genetics ; Plasmids ; rice ; RNA sequencing ; RNA, Transfer - genetics ; synthetic genes ; Transfer RNA ; Zea mays ; Zea mays - genetics</subject><ispartof>BMC biotechnology, 2016-08, Vol.16 (1), p.58-58, Article 58</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-69017c15c28c5b2cb6f48af6827dddaa915c5d07330c0738fb89b1690317804a3</citedby><cites>FETCH-LOGICAL-c695t-69017c15c28c5b2cb6f48af6827dddaa915c5d07330c0738fb89b1690317804a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982333/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982333/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27515683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Weiwei</creatorcontrib><creatorcontrib>Zhu, Tong</creatorcontrib><creatorcontrib>Tian, Zhongrui</creatorcontrib><creatorcontrib>Li, Chaobin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Song, Rentao</creatorcontrib><title>High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize</title><title>BMC biotechnology</title><addtitle>BMC Biotechnol</addtitle><description>CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.</description><subject>breeding</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Corn</subject><subject>CRISPR-Associated Proteins</subject><subject>gene editing</subject><subject>Gene Editing - methods</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genetic aspects</subject><subject>Glycine - genetics</subject><subject>Methodology</subject><subject>Methods</subject><subject>mutagenesis</subject><subject>Mutation</subject><subject>non-coding RNA</subject><subject>Observations</subject><subject>Oryza sativa</subject><subject>Physiological aspects</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plasmids</subject><subject>rice</subject><subject>RNA sequencing</subject><subject>RNA, Transfer - genetics</subject><subject>synthetic genes</subject><subject>Transfer RNA</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>1472-6750</issn><issn>1472-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>KPI</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1u1DAUhS1ERduBB2CDIrGhi7S2EzvOBmk0onTUilZTYGs5zk3GVeJMY6dqeHocppQOQqK2_CPf71xd2wehtwQfEyL4iSNU5DzGJIywi-kLdEDSjMY8Y_jlk_0-OnTuBmOSCcxfoX2aMcK4SA6QOzP1OoaqMtqA1WO0WC2vr1YnC-XyqB0abzYN3Ec1WIigNN7YOhrcNPs1RHUzahMifvVlHm_6ToP7FXOj89DGhXJQRs73ykM9RsZGrTI_4DXaq1Tj4M3DOkPfTj99XZzFF5efl4v5Rax5znzM81CvJkxToVlBdcGrVKiKC5qVZalUHkKsxFmSYB1mURUiL0hQJdM1U5XM0Mdt3s1QtFBqsKGSRm5606p-lJ0ycjdizVrW3Z1Mc0GT0Gbow0OCvrsdwHnZGqehaZSFbnCSYpFiLljK_4sSQUiCMQuFztD7v9CbbuhteImJyjDliRB_qFo1II2tulCinpLKecqFIIIxFqjjf1Chl9Aa3VmoTDjfERztCALj4d7XanBOnl8tn80ur1fPZy-_77Jky-q-c66H6vFLCJaTseXW2DIYW07GljRo3j39y0fFbycnPwFWoe9-</recordid><startdate>20160811</startdate><enddate>20160811</enddate><creator>Qi, Weiwei</creator><creator>Zhu, Tong</creator><creator>Tian, Zhongrui</creator><creator>Li, Chaobin</creator><creator>Zhang, Wei</creator><creator>Song, Rentao</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>KPI</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160811</creationdate><title>High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize</title><author>Qi, Weiwei ; Zhu, Tong ; Tian, Zhongrui ; Li, Chaobin ; Zhang, Wei ; Song, Rentao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-69017c15c28c5b2cb6f48af6827dddaa915c5d07330c0738fb89b1690317804a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>breeding</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Corn</topic><topic>CRISPR-Associated Proteins</topic><topic>gene editing</topic><topic>Gene Editing - methods</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genetic aspects</topic><topic>Glycine - genetics</topic><topic>Methodology</topic><topic>Methods</topic><topic>mutagenesis</topic><topic>Mutation</topic><topic>non-coding RNA</topic><topic>Observations</topic><topic>Oryza sativa</topic><topic>Physiological aspects</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plasmids</topic><topic>rice</topic><topic>RNA sequencing</topic><topic>RNA, Transfer - genetics</topic><topic>synthetic genes</topic><topic>Transfer RNA</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Weiwei</creatorcontrib><creatorcontrib>Zhu, Tong</creatorcontrib><creatorcontrib>Tian, Zhongrui</creatorcontrib><creatorcontrib>Li, Chaobin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Song, Rentao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>Gale In Context: Global Issues</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Weiwei</au><au>Zhu, Tong</au><au>Tian, Zhongrui</au><au>Li, Chaobin</au><au>Zhang, Wei</au><au>Song, Rentao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize</atitle><jtitle>BMC biotechnology</jtitle><addtitle>BMC Biotechnol</addtitle><date>2016-08-11</date><risdate>2016</risdate><volume>16</volume><issue>1</issue><spage>58</spage><epage>58</epage><pages>58-58</pages><artnum>58</artnum><issn>1472-6750</issn><eissn>1472-6750</eissn><abstract>CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27515683</pmid><doi>10.1186/s12896-016-0289-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1472-6750
ispartof BMC biotechnology, 2016-08, Vol.16 (1), p.58-58, Article 58
issn 1472-6750
1472-6750
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4982333
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access; Springer Nature OA Free Journals
subjects breeding
Clustered Regularly Interspaced Short Palindromic Repeats
Corn
CRISPR-Associated Proteins
gene editing
Gene Editing - methods
Gene mutations
Genes
Genes, Plant - genetics
Genetic aspects
Glycine - genetics
Methodology
Methods
mutagenesis
Mutation
non-coding RNA
Observations
Oryza sativa
Physiological aspects
Plant Proteins - genetics
Plants, Genetically Modified - genetics
Plasmids
rice
RNA sequencing
RNA, Transfer - genetics
synthetic genes
Transfer RNA
Zea mays
Zea mays - genetics
title High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-efficiency%20CRISPR/Cas9%20multiplex%20gene%20editing%20using%20the%20glycine%20tRNA-processing%20system-based%20strategy%20in%20maize&rft.jtitle=BMC%20biotechnology&rft.au=Qi,%20Weiwei&rft.date=2016-08-11&rft.volume=16&rft.issue=1&rft.spage=58&rft.epage=58&rft.pages=58-58&rft.artnum=58&rft.issn=1472-6750&rft.eissn=1472-6750&rft_id=info:doi/10.1186/s12896-016-0289-2&rft_dat=%3Cgale_pubme%3EA468818555%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1817026388&rft_id=info:pmid/27515683&rft_galeid=A468818555&rfr_iscdi=true