Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria
Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2016-04, Vol.18 (4), p.1264-1276 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1276 |
---|---|
container_issue | 4 |
container_start_page | 1264 |
container_title | Environmental microbiology |
container_volume | 18 |
creator | Tashiro, Yosuke Monson, Rita E Ramsay, Joshua P Salmond, George P. C |
description | Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain. |
doi_str_mv | 10.1111/1462-2920.13203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4982088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1782831919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw5gaRuHBJ64_Eji9IaFvaohaEoHC0Jo6zdfHGWzsp7L9ntmkj4AKWJY_tZ17N-HWWPadkn-I4oKVgBVMMt5wR_iDbnU8ezjFlO9mTlK4IoZJL8jjbYUKWnHG6m306D96a0UPMl7a3gzM59G2-vtwkZ8DjBjyGKQ9dvoSU31g89zblrs-bMWygH3LbDzaGBgwuDp5mjzrwyT67W_eyi3dHXxYnxdnH49PF27PCCFbzopSM14KaWvAKVFvWZVNZVZuGtlK20KmmlIKKionOiEaJyljBDTZJGyIbYHwvezPprsdmZVuDVUTweh3dCuJGB3D6z5veXepluNGlqhmpaxR4fScQw_Vo06BXLhnrPfQ2jElTqcqK4Buq_0Br7IkqukVf_YVehTHiK95SVOAkHKmDiTIxpBRtN9dNid46q7fe6a2P-tZZzHjxe7szf28lAtUE_HDebv6lp4_OT--FiynPpcH-nPMgftcCv0ulv3041lzIQ7p4_1VL5F9OfAdBwzK6pC8-oy0CvxerlGL8Fyc6xKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781681603</pqid></control><display><type>article</type><title>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Tashiro, Yosuke ; Monson, Rita E ; Ramsay, Joshua P ; Salmond, George P. C</creator><creatorcontrib>Tashiro, Yosuke ; Monson, Rita E ; Ramsay, Joshua P ; Salmond, George P. C</creatorcontrib><description>Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13203</identifier><identifier>PMID: 26743231</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Archaea ; bacteria ; Bacterial Proteins - genetics ; biosynthesis ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Halobacterium ; Halobacterium salinarum ; Halobacterium salinarum - genetics ; Halobacterium salinarum - metabolism ; Molecular Sequence Data ; multigene family ; mutation ; niches ; Organelles ; proteins ; Proteins - genetics ; Proteobacteria ; Serratia ; Serratia - genetics ; Serratia - metabolism ; turgor</subject><ispartof>Environmental microbiology, 2016-04, Vol.18 (4), p.1264-1276</ispartof><rights>2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2016 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</citedby><cites>FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13203$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13203$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26743231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tashiro, Yosuke</creatorcontrib><creatorcontrib>Monson, Rita E</creatorcontrib><creatorcontrib>Ramsay, Joshua P</creatorcontrib><creatorcontrib>Salmond, George P. C</creatorcontrib><title>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.</description><subject>Archaea</subject><subject>bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>biosynthesis</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Halobacterium</subject><subject>Halobacterium salinarum</subject><subject>Halobacterium salinarum - genetics</subject><subject>Halobacterium salinarum - metabolism</subject><subject>Molecular Sequence Data</subject><subject>multigene family</subject><subject>mutation</subject><subject>niches</subject><subject>Organelles</subject><subject>proteins</subject><subject>Proteins - genetics</subject><subject>Proteobacteria</subject><subject>Serratia</subject><subject>Serratia - genetics</subject><subject>Serratia - metabolism</subject><subject>turgor</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw5gaRuHBJ64_Eji9IaFvaohaEoHC0Jo6zdfHGWzsp7L9ntmkj4AKWJY_tZ17N-HWWPadkn-I4oKVgBVMMt5wR_iDbnU8ezjFlO9mTlK4IoZJL8jjbYUKWnHG6m306D96a0UPMl7a3gzM59G2-vtwkZ8DjBjyGKQ9dvoSU31g89zblrs-bMWygH3LbDzaGBgwuDp5mjzrwyT67W_eyi3dHXxYnxdnH49PF27PCCFbzopSM14KaWvAKVFvWZVNZVZuGtlK20KmmlIKKionOiEaJyljBDTZJGyIbYHwvezPprsdmZVuDVUTweh3dCuJGB3D6z5veXepluNGlqhmpaxR4fScQw_Vo06BXLhnrPfQ2jElTqcqK4Buq_0Br7IkqukVf_YVehTHiK95SVOAkHKmDiTIxpBRtN9dNid46q7fe6a2P-tZZzHjxe7szf28lAtUE_HDebv6lp4_OT--FiynPpcH-nPMgftcCv0ulv3041lzIQ7p4_1VL5F9OfAdBwzK6pC8-oy0CvxerlGL8Fyc6xKM</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Tashiro, Yosuke</creator><creator>Monson, Rita E</creator><creator>Ramsay, Joshua P</creator><creator>Salmond, George P. C</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201604</creationdate><title>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</title><author>Tashiro, Yosuke ; Monson, Rita E ; Ramsay, Joshua P ; Salmond, George P. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Archaea</topic><topic>bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>biosynthesis</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Halobacterium</topic><topic>Halobacterium salinarum</topic><topic>Halobacterium salinarum - genetics</topic><topic>Halobacterium salinarum - metabolism</topic><topic>Molecular Sequence Data</topic><topic>multigene family</topic><topic>mutation</topic><topic>niches</topic><topic>Organelles</topic><topic>proteins</topic><topic>Proteins - genetics</topic><topic>Proteobacteria</topic><topic>Serratia</topic><topic>Serratia - genetics</topic><topic>Serratia - metabolism</topic><topic>turgor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tashiro, Yosuke</creatorcontrib><creatorcontrib>Monson, Rita E</creatorcontrib><creatorcontrib>Ramsay, Joshua P</creatorcontrib><creatorcontrib>Salmond, George P. C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tashiro, Yosuke</au><au>Monson, Rita E</au><au>Ramsay, Joshua P</au><au>Salmond, George P. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2016-04</date><risdate>2016</risdate><volume>18</volume><issue>4</issue><spage>1264</spage><epage>1276</epage><pages>1264-1276</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>26743231</pmid><doi>10.1111/1462-2920.13203</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2016-04, Vol.18 (4), p.1264-1276 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4982088 |
source | MEDLINE; Wiley Journals |
subjects | Archaea bacteria Bacterial Proteins - genetics biosynthesis Cyanobacteria Cyanobacteria - genetics Cyanobacteria - metabolism Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Halobacterium Halobacterium salinarum Halobacterium salinarum - genetics Halobacterium salinarum - metabolism Molecular Sequence Data multigene family mutation niches Organelles proteins Proteins - genetics Proteobacteria Serratia Serratia - genetics Serratia - metabolism turgor |
title | Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20genetic%20and%20physical%20analysis%20of%20gas%20vesicles%20in%20buoyant%20enterobacteria&rft.jtitle=Environmental%20microbiology&rft.au=Tashiro,%20Yosuke&rft.date=2016-04&rft.volume=18&rft.issue=4&rft.spage=1264&rft.epage=1276&rft.pages=1264-1276&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13203&rft_dat=%3Cproquest_pubme%3E1782831919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781681603&rft_id=info:pmid/26743231&rfr_iscdi=true |