Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria

Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2016-04, Vol.18 (4), p.1264-1276
Hauptverfasser: Tashiro, Yosuke, Monson, Rita E, Ramsay, Joshua P, Salmond, George P. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1276
container_issue 4
container_start_page 1264
container_title Environmental microbiology
container_volume 18
creator Tashiro, Yosuke
Monson, Rita E
Ramsay, Joshua P
Salmond, George P. C
description Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.
doi_str_mv 10.1111/1462-2920.13203
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4982088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1782831919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw5gaRuHBJ64_Eji9IaFvaohaEoHC0Jo6zdfHGWzsp7L9ntmkj4AKWJY_tZ17N-HWWPadkn-I4oKVgBVMMt5wR_iDbnU8ezjFlO9mTlK4IoZJL8jjbYUKWnHG6m306D96a0UPMl7a3gzM59G2-vtwkZ8DjBjyGKQ9dvoSU31g89zblrs-bMWygH3LbDzaGBgwuDp5mjzrwyT67W_eyi3dHXxYnxdnH49PF27PCCFbzopSM14KaWvAKVFvWZVNZVZuGtlK20KmmlIKKionOiEaJyljBDTZJGyIbYHwvezPprsdmZVuDVUTweh3dCuJGB3D6z5veXepluNGlqhmpaxR4fScQw_Vo06BXLhnrPfQ2jElTqcqK4Buq_0Br7IkqukVf_YVehTHiK95SVOAkHKmDiTIxpBRtN9dNid46q7fe6a2P-tZZzHjxe7szf28lAtUE_HDebv6lp4_OT--FiynPpcH-nPMgftcCv0ulv3041lzIQ7p4_1VL5F9OfAdBwzK6pC8-oy0CvxerlGL8Fyc6xKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781681603</pqid></control><display><type>article</type><title>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Tashiro, Yosuke ; Monson, Rita E ; Ramsay, Joshua P ; Salmond, George P. C</creator><creatorcontrib>Tashiro, Yosuke ; Monson, Rita E ; Ramsay, Joshua P ; Salmond, George P. C</creatorcontrib><description>Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13203</identifier><identifier>PMID: 26743231</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Archaea ; bacteria ; Bacterial Proteins - genetics ; biosynthesis ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Halobacterium ; Halobacterium salinarum ; Halobacterium salinarum - genetics ; Halobacterium salinarum - metabolism ; Molecular Sequence Data ; multigene family ; mutation ; niches ; Organelles ; proteins ; Proteins - genetics ; Proteobacteria ; Serratia ; Serratia - genetics ; Serratia - metabolism ; turgor</subject><ispartof>Environmental microbiology, 2016-04, Vol.18 (4), p.1264-1276</ispartof><rights>2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2016 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</citedby><cites>FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13203$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13203$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26743231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tashiro, Yosuke</creatorcontrib><creatorcontrib>Monson, Rita E</creatorcontrib><creatorcontrib>Ramsay, Joshua P</creatorcontrib><creatorcontrib>Salmond, George P. C</creatorcontrib><title>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.</description><subject>Archaea</subject><subject>bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>biosynthesis</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Halobacterium</subject><subject>Halobacterium salinarum</subject><subject>Halobacterium salinarum - genetics</subject><subject>Halobacterium salinarum - metabolism</subject><subject>Molecular Sequence Data</subject><subject>multigene family</subject><subject>mutation</subject><subject>niches</subject><subject>Organelles</subject><subject>proteins</subject><subject>Proteins - genetics</subject><subject>Proteobacteria</subject><subject>Serratia</subject><subject>Serratia - genetics</subject><subject>Serratia - metabolism</subject><subject>turgor</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw5gaRuHBJ64_Eji9IaFvaohaEoHC0Jo6zdfHGWzsp7L9ntmkj4AKWJY_tZ17N-HWWPadkn-I4oKVgBVMMt5wR_iDbnU8ezjFlO9mTlK4IoZJL8jjbYUKWnHG6m306D96a0UPMl7a3gzM59G2-vtwkZ8DjBjyGKQ9dvoSU31g89zblrs-bMWygH3LbDzaGBgwuDp5mjzrwyT67W_eyi3dHXxYnxdnH49PF27PCCFbzopSM14KaWvAKVFvWZVNZVZuGtlK20KmmlIKKionOiEaJyljBDTZJGyIbYHwvezPprsdmZVuDVUTweh3dCuJGB3D6z5veXepluNGlqhmpaxR4fScQw_Vo06BXLhnrPfQ2jElTqcqK4Buq_0Br7IkqukVf_YVehTHiK95SVOAkHKmDiTIxpBRtN9dNid46q7fe6a2P-tZZzHjxe7szf28lAtUE_HDebv6lp4_OT--FiynPpcH-nPMgftcCv0ulv3041lzIQ7p4_1VL5F9OfAdBwzK6pC8-oy0CvxerlGL8Fyc6xKM</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Tashiro, Yosuke</creator><creator>Monson, Rita E</creator><creator>Ramsay, Joshua P</creator><creator>Salmond, George P. C</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201604</creationdate><title>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</title><author>Tashiro, Yosuke ; Monson, Rita E ; Ramsay, Joshua P ; Salmond, George P. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6283-4723861c8635a9d484b5e98cb1d77daf9b47616526fc6b965ce63c3201b07ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Archaea</topic><topic>bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>biosynthesis</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Halobacterium</topic><topic>Halobacterium salinarum</topic><topic>Halobacterium salinarum - genetics</topic><topic>Halobacterium salinarum - metabolism</topic><topic>Molecular Sequence Data</topic><topic>multigene family</topic><topic>mutation</topic><topic>niches</topic><topic>Organelles</topic><topic>proteins</topic><topic>Proteins - genetics</topic><topic>Proteobacteria</topic><topic>Serratia</topic><topic>Serratia - genetics</topic><topic>Serratia - metabolism</topic><topic>turgor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tashiro, Yosuke</creatorcontrib><creatorcontrib>Monson, Rita E</creatorcontrib><creatorcontrib>Ramsay, Joshua P</creatorcontrib><creatorcontrib>Salmond, George P. C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tashiro, Yosuke</au><au>Monson, Rita E</au><au>Ramsay, Joshua P</au><au>Salmond, George P. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2016-04</date><risdate>2016</risdate><volume>18</volume><issue>4</issue><spage>1264</spage><epage>1276</epage><pages>1264-1276</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>26743231</pmid><doi>10.1111/1462-2920.13203</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2016-04, Vol.18 (4), p.1264-1276
issn 1462-2912
1462-2920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4982088
source MEDLINE; Wiley Journals
subjects Archaea
bacteria
Bacterial Proteins - genetics
biosynthesis
Cyanobacteria
Cyanobacteria - genetics
Cyanobacteria - metabolism
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Halobacterium
Halobacterium salinarum
Halobacterium salinarum - genetics
Halobacterium salinarum - metabolism
Molecular Sequence Data
multigene family
mutation
niches
Organelles
proteins
Proteins - genetics
Proteobacteria
Serratia
Serratia - genetics
Serratia - metabolism
turgor
title Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20genetic%20and%20physical%20analysis%20of%20gas%20vesicles%20in%20buoyant%20enterobacteria&rft.jtitle=Environmental%20microbiology&rft.au=Tashiro,%20Yosuke&rft.date=2016-04&rft.volume=18&rft.issue=4&rft.spage=1264&rft.epage=1276&rft.pages=1264-1276&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13203&rft_dat=%3Cproquest_pubme%3E1782831919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781681603&rft_id=info:pmid/26743231&rfr_iscdi=true