Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment

Abstract Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-12, Vol.73, p.1-11
Hauptverfasser: Chan, Angel T, Karakas, Mehmet F, Vakrou, Styliani, Afzal, Junaid, Rittenbach, Andrew, Lin, Xiaoping, Wahl, Richard L, Pomper, Martin G, Steenbergen, Charles J, Tsui, Benjamin M.W, Elisseeff, Jennifer H, Abraham, M. Roselle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Biomaterials
container_volume 73
creator Chan, Angel T
Karakas, Mehmet F
Vakrou, Styliani
Afzal, Junaid
Rittenbach, Andrew
Lin, Xiaoping
Wahl, Richard L
Pomper, Martin G
Steenbergen, Charles J
Tsui, Benjamin M.W
Elisseeff, Jennifer H
Abraham, M. Roselle
description Abstract Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of18 FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types.
doi_str_mv 10.1016/j.biomaterials.2015.09.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4980097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215007383</els_id><sourcerecordid>1762111541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-27f3439434d6c928533f50061a0bf501892e9e3a09db6e4a579cf3a408d04dc43</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEokvhK6CIE5eE8Z_EMYdKqAWKVIkDcLa89mTrJY4XO6mUb4-jLVXhwp5syW_ezPj9iuINgZoAad_t660LXk8YnR5STYE0NcgagDwpNqQTXdVIaJ4WGyCcVrIl9Kx4kdI-Czhw-rw4oy0TnRTtpvDXix7mGEZnSm2crRLG2Ze3i41hh0Mqoz44OyxlxDSFiKXHSW_D4JIvQ1_iaPQhzUMexpZpQl8aHHKVHm15iMGHCbNmF3U_eRynl8WzPo-Mr-7P8-LHp4_fL6-rm6-fv1x-uKlMy8lUUdEzziRn3LZG0q5hrG8AWqJhmy-kkxQlMg3SblvkuhHS9Exz6Cxwazg7Ly6Ovod569Ga3DrqQR2i8zouKmin_n4Z3a3ahTvFZQcgRTZ4e28Qw685r668S-tqesQwJ0UBgDZCAPuvlIiWEkIaTk6QUtHKnMwprpTmqBsis_T9UWpiSCli_7AnAbUCo_bqMTBqBUaBVJmHXPz68U89lP4hJAuujoIMA945jCoZl2NH6yKaSdngTutz8Y-NGVyGTg8_ccG0D3Mc1xqiElWgvq3oruSSnLtgHWO_Afew70Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722187519</pqid></control><display><type>article</type><title>Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chan, Angel T ; Karakas, Mehmet F ; Vakrou, Styliani ; Afzal, Junaid ; Rittenbach, Andrew ; Lin, Xiaoping ; Wahl, Richard L ; Pomper, Martin G ; Steenbergen, Charles J ; Tsui, Benjamin M.W ; Elisseeff, Jennifer H ; Abraham, M. Roselle</creator><creatorcontrib>Chan, Angel T ; Karakas, Mehmet F ; Vakrou, Styliani ; Afzal, Junaid ; Rittenbach, Andrew ; Lin, Xiaoping ; Wahl, Richard L ; Pomper, Martin G ; Steenbergen, Charles J ; Tsui, Benjamin M.W ; Elisseeff, Jennifer H ; Abraham, M. Roselle</creatorcontrib><description>Abstract Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of18 FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days &amp; 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.09.001</identifier><identifier>PMID: 26378976</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Angiogenesis ; Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; biodegradability ; bioluminescence ; Biomedical materials ; blood serum ; cardiac output ; Cell Adhesion ; Cell Proliferation ; Cell Survival ; Cell Transplantation ; crosslinking ; Dentistry ; dissociation ; Echocardiography ; Elastic Modulus ; Embryonic Stem Cells - cytology ; Encapsulation ; energy metabolism ; Engraftment ; Female ; Fluorodeoxyglucose F18 - chemistry ; genes ; glucose ; Glucose - chemistry ; HA:Serum hydrogels ; heart ; Heart - drug effects ; Heart - physiology ; Humans ; Hyaluronic Acid - chemistry ; hydrocolloids ; Hydrogels ; Hydrogels - chemistry ; image analysis ; in vitro studies ; In vivo testing ; Intercellular Signaling Peptides and Proteins - metabolism ; isotopes ; luciferase ; Male ; Mesenchymal Stromal Cells - cytology ; Metabolism ; Mice ; Molecular imaging ; Multimodal Imaging ; Myocardium - metabolism ; necrosis ; Neovascularization, Pathologic ; niches ; physical properties ; Rats ; Rats, Inbred WKY ; Stem Cell Transplantation - instrumentation ; Stem Cell Transplantation - methods ; Stem cells ; Stem Cells - cytology ; succinic acid ; Surgical implants ; symporters ; Tissue Engineering ; Tissue Scaffolds ; Tomography, Emission-Computed, Single-Photon ; Tomography, X-Ray Computed ; viability</subject><ispartof>Biomaterials, 2015-12, Vol.73, p.1-11</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-27f3439434d6c928533f50061a0bf501892e9e3a09db6e4a579cf3a408d04dc43</citedby><cites>FETCH-LOGICAL-c641t-27f3439434d6c928533f50061a0bf501892e9e3a09db6e4a579cf3a408d04dc43</cites><orcidid>0000-0001-7928-5093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961215007383$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26378976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Angel T</creatorcontrib><creatorcontrib>Karakas, Mehmet F</creatorcontrib><creatorcontrib>Vakrou, Styliani</creatorcontrib><creatorcontrib>Afzal, Junaid</creatorcontrib><creatorcontrib>Rittenbach, Andrew</creatorcontrib><creatorcontrib>Lin, Xiaoping</creatorcontrib><creatorcontrib>Wahl, Richard L</creatorcontrib><creatorcontrib>Pomper, Martin G</creatorcontrib><creatorcontrib>Steenbergen, Charles J</creatorcontrib><creatorcontrib>Tsui, Benjamin M.W</creatorcontrib><creatorcontrib>Elisseeff, Jennifer H</creatorcontrib><creatorcontrib>Abraham, M. Roselle</creatorcontrib><title>Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of18 FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days &amp; 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types.</description><subject>Advanced Basic Science</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>biodegradability</subject><subject>bioluminescence</subject><subject>Biomedical materials</subject><subject>blood serum</subject><subject>cardiac output</subject><subject>Cell Adhesion</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cell Transplantation</subject><subject>crosslinking</subject><subject>Dentistry</subject><subject>dissociation</subject><subject>Echocardiography</subject><subject>Elastic Modulus</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Encapsulation</subject><subject>energy metabolism</subject><subject>Engraftment</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18 - chemistry</subject><subject>genes</subject><subject>glucose</subject><subject>Glucose - chemistry</subject><subject>HA:Serum hydrogels</subject><subject>heart</subject><subject>Heart - drug effects</subject><subject>Heart - physiology</subject><subject>Humans</subject><subject>Hyaluronic Acid - chemistry</subject><subject>hydrocolloids</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>image analysis</subject><subject>in vitro studies</subject><subject>In vivo testing</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>isotopes</subject><subject>luciferase</subject><subject>Male</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Molecular imaging</subject><subject>Multimodal Imaging</subject><subject>Myocardium - metabolism</subject><subject>necrosis</subject><subject>Neovascularization, Pathologic</subject><subject>niches</subject><subject>physical properties</subject><subject>Rats</subject><subject>Rats, Inbred WKY</subject><subject>Stem Cell Transplantation - instrumentation</subject><subject>Stem Cell Transplantation - methods</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>succinic acid</subject><subject>Surgical implants</subject><subject>symporters</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><subject>Tomography, X-Ray Computed</subject><subject>viability</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxSMEokvhK6CIE5eE8Z_EMYdKqAWKVIkDcLa89mTrJY4XO6mUb4-jLVXhwp5syW_ezPj9iuINgZoAad_t660LXk8YnR5STYE0NcgagDwpNqQTXdVIaJ4WGyCcVrIl9Kx4kdI-Czhw-rw4oy0TnRTtpvDXix7mGEZnSm2crRLG2Ze3i41hh0Mqoz44OyxlxDSFiKXHSW_D4JIvQ1_iaPQhzUMexpZpQl8aHHKVHm15iMGHCbNmF3U_eRynl8WzPo-Mr-7P8-LHp4_fL6-rm6-fv1x-uKlMy8lUUdEzziRn3LZG0q5hrG8AWqJhmy-kkxQlMg3SblvkuhHS9Exz6Cxwazg7Ly6Ovod569Ga3DrqQR2i8zouKmin_n4Z3a3ahTvFZQcgRTZ4e28Qw685r668S-tqesQwJ0UBgDZCAPuvlIiWEkIaTk6QUtHKnMwprpTmqBsis_T9UWpiSCli_7AnAbUCo_bqMTBqBUaBVJmHXPz68U89lP4hJAuujoIMA945jCoZl2NH6yKaSdngTutz8Y-NGVyGTg8_ccG0D3Mc1xqiElWgvq3oruSSnLtgHWO_Afew70Q</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Chan, Angel T</creator><creator>Karakas, Mehmet F</creator><creator>Vakrou, Styliani</creator><creator>Afzal, Junaid</creator><creator>Rittenbach, Andrew</creator><creator>Lin, Xiaoping</creator><creator>Wahl, Richard L</creator><creator>Pomper, Martin G</creator><creator>Steenbergen, Charles J</creator><creator>Tsui, Benjamin M.W</creator><creator>Elisseeff, Jennifer H</creator><creator>Abraham, M. Roselle</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7928-5093</orcidid></search><sort><creationdate>20151201</creationdate><title>Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment</title><author>Chan, Angel T ; Karakas, Mehmet F ; Vakrou, Styliani ; Afzal, Junaid ; Rittenbach, Andrew ; Lin, Xiaoping ; Wahl, Richard L ; Pomper, Martin G ; Steenbergen, Charles J ; Tsui, Benjamin M.W ; Elisseeff, Jennifer H ; Abraham, M. Roselle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-27f3439434d6c928533f50061a0bf501892e9e3a09db6e4a579cf3a408d04dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced Basic Science</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>biodegradability</topic><topic>bioluminescence</topic><topic>Biomedical materials</topic><topic>blood serum</topic><topic>cardiac output</topic><topic>Cell Adhesion</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cell Transplantation</topic><topic>crosslinking</topic><topic>Dentistry</topic><topic>dissociation</topic><topic>Echocardiography</topic><topic>Elastic Modulus</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Encapsulation</topic><topic>energy metabolism</topic><topic>Engraftment</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18 - chemistry</topic><topic>genes</topic><topic>glucose</topic><topic>Glucose - chemistry</topic><topic>HA:Serum hydrogels</topic><topic>heart</topic><topic>Heart - drug effects</topic><topic>Heart - physiology</topic><topic>Humans</topic><topic>Hyaluronic Acid - chemistry</topic><topic>hydrocolloids</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>image analysis</topic><topic>in vitro studies</topic><topic>In vivo testing</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>isotopes</topic><topic>luciferase</topic><topic>Male</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Molecular imaging</topic><topic>Multimodal Imaging</topic><topic>Myocardium - metabolism</topic><topic>necrosis</topic><topic>Neovascularization, Pathologic</topic><topic>niches</topic><topic>physical properties</topic><topic>Rats</topic><topic>Rats, Inbred WKY</topic><topic>Stem Cell Transplantation - instrumentation</topic><topic>Stem Cell Transplantation - methods</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>succinic acid</topic><topic>Surgical implants</topic><topic>symporters</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><topic>Tomography, X-Ray Computed</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Angel T</creatorcontrib><creatorcontrib>Karakas, Mehmet F</creatorcontrib><creatorcontrib>Vakrou, Styliani</creatorcontrib><creatorcontrib>Afzal, Junaid</creatorcontrib><creatorcontrib>Rittenbach, Andrew</creatorcontrib><creatorcontrib>Lin, Xiaoping</creatorcontrib><creatorcontrib>Wahl, Richard L</creatorcontrib><creatorcontrib>Pomper, Martin G</creatorcontrib><creatorcontrib>Steenbergen, Charles J</creatorcontrib><creatorcontrib>Tsui, Benjamin M.W</creatorcontrib><creatorcontrib>Elisseeff, Jennifer H</creatorcontrib><creatorcontrib>Abraham, M. Roselle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Angel T</au><au>Karakas, Mehmet F</au><au>Vakrou, Styliani</au><au>Afzal, Junaid</au><au>Rittenbach, Andrew</au><au>Lin, Xiaoping</au><au>Wahl, Richard L</au><au>Pomper, Martin G</au><au>Steenbergen, Charles J</au><au>Tsui, Benjamin M.W</au><au>Elisseeff, Jennifer H</au><au>Abraham, M. Roselle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of18 FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days &amp; 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26378976</pmid><doi>10.1016/j.biomaterials.2015.09.001</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7928-5093</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-12, Vol.73, p.1-11
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4980097
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Advanced Basic Science
Angiogenesis
Animals
Biocompatibility
Biocompatible Materials - chemistry
biodegradability
bioluminescence
Biomedical materials
blood serum
cardiac output
Cell Adhesion
Cell Proliferation
Cell Survival
Cell Transplantation
crosslinking
Dentistry
dissociation
Echocardiography
Elastic Modulus
Embryonic Stem Cells - cytology
Encapsulation
energy metabolism
Engraftment
Female
Fluorodeoxyglucose F18 - chemistry
genes
glucose
Glucose - chemistry
HA:Serum hydrogels
heart
Heart - drug effects
Heart - physiology
Humans
Hyaluronic Acid - chemistry
hydrocolloids
Hydrogels
Hydrogels - chemistry
image analysis
in vitro studies
In vivo testing
Intercellular Signaling Peptides and Proteins - metabolism
isotopes
luciferase
Male
Mesenchymal Stromal Cells - cytology
Metabolism
Mice
Molecular imaging
Multimodal Imaging
Myocardium - metabolism
necrosis
Neovascularization, Pathologic
niches
physical properties
Rats
Rats, Inbred WKY
Stem Cell Transplantation - instrumentation
Stem Cell Transplantation - methods
Stem cells
Stem Cells - cytology
succinic acid
Surgical implants
symporters
Tissue Engineering
Tissue Scaffolds
Tomography, Emission-Computed, Single-Photon
Tomography, X-Ray Computed
viability
title Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyaluronic%20acid-serum%20hydrogels%20rapidly%20restore%20metabolism%20of%20encapsulated%20stem%20cells%20and%20promote%20engraftment&rft.jtitle=Biomaterials&rft.au=Chan,%20Angel%20T&rft.date=2015-12-01&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.09.001&rft_dat=%3Cproquest_pubme%3E1762111541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722187519&rft_id=info:pmid/26378976&rft_els_id=1_s2_0_S0142961215007383&rfr_iscdi=true