mTORC2 controls cancer cell survival by modulating gluconeogenesis
For rapid tumor growth, cancer cells often reprogram the cellular metabolic processes to obtain enhanced anabolic precursors and energy. The molecular changes of such metabolic rewiring are far from established. Here we explored the role of mTOR (mechanistic target of rapamycin), which serves as a k...
Gespeichert in:
Veröffentlicht in: | Cell death discovery 2015-09, Vol.1 (1), p.15016-15016, Article 15016 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15016 |
---|---|
container_issue | 1 |
container_start_page | 15016 |
container_title | Cell death discovery |
container_volume | 1 |
creator | Khan, MW Biswas, D Ghosh, M Mandloi, S Chakrabarti, S Chakrabarti, P |
description | For rapid tumor growth, cancer cells often reprogram the cellular metabolic processes to obtain enhanced anabolic precursors and energy. The molecular changes of such metabolic rewiring are far from established. Here we explored the role of mTOR (mechanistic target of rapamycin), which serves as a key regulator of cell growth, proliferation and survival, in the metabolic reprograming of cancer cells. When we inhibited mTOR in human hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) cells, using pharmacologic inhibitors or by RNA interference, we noticed shuttle of the glycolytic flux to gluconeogenesis pathway along with reduction in cellular proliferation and survival. Augmentation of gluconeogenesis was mechanistically linked to upregulation of the key gluconeogenic enzymes
PCK1
and
G6PC
expressions, enhanced lactate dehydrogenase activity and glucose-derived lipogenesis without causing any attenuation in mitochondrial function. Interestingly, concomitant knocking down of
PCK1
and not
G6PC
along with mTOR pathway could overcome the inhibition of cancer cell proliferation and survival. These observations were validated by identifying distinctive diminution of
PCK1
and
G6PC
expressions in human HCC and RCC transcriptome data. Significant correlation between mTOR-dependent upregulation of
PCK1
and cell death in different cancer cell lines further emphasizes the physiological relevance of this pathway. We reveal for the first time that inhibition of mTORC2 and consequent redistribution of glycolytic flux can have a prosurvival role in HCC and RCC cancer cells only in the presence of downregulation of gluconeogenesis pathway genes, thus identifying novel pivots of cancer cell metabolic rewiring and targets for therapy. |
doi_str_mv | 10.1038/cddiscovery.2015.16 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4979518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4040188751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-7e7ab37aff585333ec771483ecfe996340532fa689229f9af9f456a464fc23fb3</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoVmp_gSADbty05jlJNoIWX1AoSF2HNE3GKTOTmnQK_femtpbqQlzdwP3uybn3AHCB4ABBIm7MbFZG41c2rAcYIjZA-RE4w5CJPucoPz54d0AvxjmEieKUC3IKOpgzhiiDZ-C-noxfhzgzvlkGX8XM6MbYkBlbVVlsw6pc6SqbrrPaz9pKL8umyIqqTbj1hW1sLOM5OHG6ira3q13w9vgwGT73R-Onl-HdqG8YQss-t1xPCdfOMcEIIdYkc1Sk6qyUOaGQEex0LiTG0kntpKMs1zSnzmDipqQLbre6i3Za25mxybGu1CKUtQ5r5XWpfnaa8l0VfqWo5JIhkQSudwLBf7Q2LlWdbpgW1WmZNiokEJEQE_gPlEsocbKKEnr1C537NjTpEokSjEGGvyiypUzwMQbr9r4RVJtE1UGiapOoQnmaujxceT_znV8C6BaIqdUUNhx8_ofuJ35FsaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785505221</pqid></control><display><type>article</type><title>mTORC2 controls cancer cell survival by modulating gluconeogenesis</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Khan, MW ; Biswas, D ; Ghosh, M ; Mandloi, S ; Chakrabarti, S ; Chakrabarti, P</creator><creatorcontrib>Khan, MW ; Biswas, D ; Ghosh, M ; Mandloi, S ; Chakrabarti, S ; Chakrabarti, P</creatorcontrib><description>For rapid tumor growth, cancer cells often reprogram the cellular metabolic processes to obtain enhanced anabolic precursors and energy. The molecular changes of such metabolic rewiring are far from established. Here we explored the role of mTOR (mechanistic target of rapamycin), which serves as a key regulator of cell growth, proliferation and survival, in the metabolic reprograming of cancer cells. When we inhibited mTOR in human hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) cells, using pharmacologic inhibitors or by RNA interference, we noticed shuttle of the glycolytic flux to gluconeogenesis pathway along with reduction in cellular proliferation and survival. Augmentation of gluconeogenesis was mechanistically linked to upregulation of the key gluconeogenic enzymes
PCK1
and
G6PC
expressions, enhanced lactate dehydrogenase activity and glucose-derived lipogenesis without causing any attenuation in mitochondrial function. Interestingly, concomitant knocking down of
PCK1
and not
G6PC
along with mTOR pathway could overcome the inhibition of cancer cell proliferation and survival. These observations were validated by identifying distinctive diminution of
PCK1
and
G6PC
expressions in human HCC and RCC transcriptome data. Significant correlation between mTOR-dependent upregulation of
PCK1
and cell death in different cancer cell lines further emphasizes the physiological relevance of this pathway. We reveal for the first time that inhibition of mTORC2 and consequent redistribution of glycolytic flux can have a prosurvival role in HCC and RCC cancer cells only in the presence of downregulation of gluconeogenesis pathway genes, thus identifying novel pivots of cancer cell metabolic rewiring and targets for therapy.</description><identifier>ISSN: 2058-7716</identifier><identifier>EISSN: 2058-7716</identifier><identifier>DOI: 10.1038/cddiscovery.2015.16</identifier><identifier>PMID: 27551450</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Life Sciences ; Stem Cells</subject><ispartof>Cell death discovery, 2015-09, Vol.1 (1), p.15016-15016, Article 15016</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015 Cell Death Differentiation Association 2015 Cell Death Differentiation Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-7e7ab37aff585333ec771483ecfe996340532fa689229f9af9f456a464fc23fb3</citedby><cites>FETCH-LOGICAL-c511t-7e7ab37aff585333ec771483ecfe996340532fa689229f9af9f456a464fc23fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27551450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, MW</creatorcontrib><creatorcontrib>Biswas, D</creatorcontrib><creatorcontrib>Ghosh, M</creatorcontrib><creatorcontrib>Mandloi, S</creatorcontrib><creatorcontrib>Chakrabarti, S</creatorcontrib><creatorcontrib>Chakrabarti, P</creatorcontrib><title>mTORC2 controls cancer cell survival by modulating gluconeogenesis</title><title>Cell death discovery</title><addtitle>Cell Death Discovery</addtitle><addtitle>Cell Death Discov</addtitle><description>For rapid tumor growth, cancer cells often reprogram the cellular metabolic processes to obtain enhanced anabolic precursors and energy. The molecular changes of such metabolic rewiring are far from established. Here we explored the role of mTOR (mechanistic target of rapamycin), which serves as a key regulator of cell growth, proliferation and survival, in the metabolic reprograming of cancer cells. When we inhibited mTOR in human hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) cells, using pharmacologic inhibitors or by RNA interference, we noticed shuttle of the glycolytic flux to gluconeogenesis pathway along with reduction in cellular proliferation and survival. Augmentation of gluconeogenesis was mechanistically linked to upregulation of the key gluconeogenic enzymes
PCK1
and
G6PC
expressions, enhanced lactate dehydrogenase activity and glucose-derived lipogenesis without causing any attenuation in mitochondrial function. Interestingly, concomitant knocking down of
PCK1
and not
G6PC
along with mTOR pathway could overcome the inhibition of cancer cell proliferation and survival. These observations were validated by identifying distinctive diminution of
PCK1
and
G6PC
expressions in human HCC and RCC transcriptome data. Significant correlation between mTOR-dependent upregulation of
PCK1
and cell death in different cancer cell lines further emphasizes the physiological relevance of this pathway. We reveal for the first time that inhibition of mTORC2 and consequent redistribution of glycolytic flux can have a prosurvival role in HCC and RCC cancer cells only in the presence of downregulation of gluconeogenesis pathway genes, thus identifying novel pivots of cancer cell metabolic rewiring and targets for therapy.</description><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Life Sciences</subject><subject>Stem Cells</subject><issn>2058-7716</issn><issn>2058-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtLAzEUhYMoVmp_gSADbty05jlJNoIWX1AoSF2HNE3GKTOTmnQK_femtpbqQlzdwP3uybn3AHCB4ABBIm7MbFZG41c2rAcYIjZA-RE4w5CJPucoPz54d0AvxjmEieKUC3IKOpgzhiiDZ-C-noxfhzgzvlkGX8XM6MbYkBlbVVlsw6pc6SqbrrPaz9pKL8umyIqqTbj1hW1sLOM5OHG6ira3q13w9vgwGT73R-Onl-HdqG8YQss-t1xPCdfOMcEIIdYkc1Sk6qyUOaGQEex0LiTG0kntpKMs1zSnzmDipqQLbre6i3Za25mxybGu1CKUtQ5r5XWpfnaa8l0VfqWo5JIhkQSudwLBf7Q2LlWdbpgW1WmZNiokEJEQE_gPlEsocbKKEnr1C537NjTpEokSjEGGvyiypUzwMQbr9r4RVJtE1UGiapOoQnmaujxceT_znV8C6BaIqdUUNhx8_ofuJ35FsaQ</recordid><startdate>20150907</startdate><enddate>20150907</enddate><creator>Khan, MW</creator><creator>Biswas, D</creator><creator>Ghosh, M</creator><creator>Mandloi, S</creator><creator>Chakrabarti, S</creator><creator>Chakrabarti, P</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7T5</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150907</creationdate><title>mTORC2 controls cancer cell survival by modulating gluconeogenesis</title><author>Khan, MW ; Biswas, D ; Ghosh, M ; Mandloi, S ; Chakrabarti, S ; Chakrabarti, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-7e7ab37aff585333ec771483ecfe996340532fa689229f9af9f456a464fc23fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Life Sciences</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, MW</creatorcontrib><creatorcontrib>Biswas, D</creatorcontrib><creatorcontrib>Ghosh, M</creatorcontrib><creatorcontrib>Mandloi, S</creatorcontrib><creatorcontrib>Chakrabarti, S</creatorcontrib><creatorcontrib>Chakrabarti, P</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, MW</au><au>Biswas, D</au><au>Ghosh, M</au><au>Mandloi, S</au><au>Chakrabarti, S</au><au>Chakrabarti, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC2 controls cancer cell survival by modulating gluconeogenesis</atitle><jtitle>Cell death discovery</jtitle><stitle>Cell Death Discovery</stitle><addtitle>Cell Death Discov</addtitle><date>2015-09-07</date><risdate>2015</risdate><volume>1</volume><issue>1</issue><spage>15016</spage><epage>15016</epage><pages>15016-15016</pages><artnum>15016</artnum><issn>2058-7716</issn><eissn>2058-7716</eissn><abstract>For rapid tumor growth, cancer cells often reprogram the cellular metabolic processes to obtain enhanced anabolic precursors and energy. The molecular changes of such metabolic rewiring are far from established. Here we explored the role of mTOR (mechanistic target of rapamycin), which serves as a key regulator of cell growth, proliferation and survival, in the metabolic reprograming of cancer cells. When we inhibited mTOR in human hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) cells, using pharmacologic inhibitors or by RNA interference, we noticed shuttle of the glycolytic flux to gluconeogenesis pathway along with reduction in cellular proliferation and survival. Augmentation of gluconeogenesis was mechanistically linked to upregulation of the key gluconeogenic enzymes
PCK1
and
G6PC
expressions, enhanced lactate dehydrogenase activity and glucose-derived lipogenesis without causing any attenuation in mitochondrial function. Interestingly, concomitant knocking down of
PCK1
and not
G6PC
along with mTOR pathway could overcome the inhibition of cancer cell proliferation and survival. These observations were validated by identifying distinctive diminution of
PCK1
and
G6PC
expressions in human HCC and RCC transcriptome data. Significant correlation between mTOR-dependent upregulation of
PCK1
and cell death in different cancer cell lines further emphasizes the physiological relevance of this pathway. We reveal for the first time that inhibition of mTORC2 and consequent redistribution of glycolytic flux can have a prosurvival role in HCC and RCC cancer cells only in the presence of downregulation of gluconeogenesis pathway genes, thus identifying novel pivots of cancer cell metabolic rewiring and targets for therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27551450</pmid><doi>10.1038/cddiscovery.2015.16</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7716 |
ispartof | Cell death discovery, 2015-09, Vol.1 (1), p.15016-15016, Article 15016 |
issn | 2058-7716 2058-7716 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4979518 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Apoptosis Biochemistry Biomedical and Life Sciences Cell Biology Cell Cycle Analysis Life Sciences Stem Cells |
title | mTORC2 controls cancer cell survival by modulating gluconeogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC2%20controls%20cancer%20cell%20survival%20by%20modulating%20gluconeogenesis&rft.jtitle=Cell%20death%20discovery&rft.au=Khan,%20MW&rft.date=2015-09-07&rft.volume=1&rft.issue=1&rft.spage=15016&rft.epage=15016&rft.pages=15016-15016&rft.artnum=15016&rft.issn=2058-7716&rft.eissn=2058-7716&rft_id=info:doi/10.1038/cddiscovery.2015.16&rft_dat=%3Cproquest_pubme%3E4040188751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785505221&rft_id=info:pmid/27551450&rfr_iscdi=true |