A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large

Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC biology 2016-08, Vol.14 (1), p.66-66, Article 66
Hauptverfasser: Waaijers, Selma, Muñoz, Javier, Berends, Christian, Ramalho, João J, Goerdayal, Soenita S, Low, Teck Y, Zoumaro-Djayoon, Adja D, Hoffmann, Michael, Koorman, Thijs, Tas, Roderick P, Harterink, Martin, Seelk, Stefanie, Kerver, Jana, Hoogenraad, Casper C, Bossinger, Olaf, Tursun, Baris, van den Heuvel, Sander, Heck, Albert J R, Boxem, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 66
container_title BMC biology
container_volume 14
creator Waaijers, Selma
Muñoz, Javier
Berends, Christian
Ramalho, João J
Goerdayal, Soenita S
Low, Teck Y
Zoumaro-Djayoon, Adja D
Hoffmann, Michael
Koorman, Thijs
Tas, Roderick P
Harterink, Martin
Seelk, Stefanie
Kerver, Jana
Hoogenraad, Casper C
Bossinger, Olaf
Tursun, Baris
van den Heuvel, Sander
Heck, Albert J R
Boxem, Mike
description Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.
doi_str_mv 10.1186/s12915-016-0286-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4977824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A468817676</galeid><sourcerecordid>A468817676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-c60f4f9655624c223cb28af1e34f67eb2d3b5a54abf2a82bcee3939f54039aec3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEoqXwA9ggS2zYhPoR28kGaTSlBWkkNrC2bjzXM64ydrCTqt3zw3E6pRRWftzvHN8rn6p6y-hHxlp1nhnvmKwpUzXlrapvn1WnTDes1pTq50_2J9WrnK8p5VJr8bI64VpSxSk9rX6tyORznrHOI1rvvCVjihP6QMY5LWeYfAwExnINdk9KYQ0YYtpDv_VFS3DAHYRM_BbDVBSYSYg3OBR0wgT2Xj9CmgKmTKIjF5urmp1f-GwzGSDt8HX1wsGQ8c3Delb9uPz8ff2l3ny7-rpebWrbSDnVVlHXuE5JqXhjORe25y04hqJxSmPPt6KXIBvoHYeW9xZRdKJzsqGiA7TirPp09B3n_oBbW_pNMJgx-QOkOxPBm38rwe_NLt6YptO65U0x-PBgkOLPGfNkDmUKHAYIGOdsWMtoqzrFu4K-_w-9jnMKZbyFUh1XUom_1A4GND64WN61i6lZNaptmVZaFYodKZtizgndY8uMmiUJ5pgEU5JgliSY26J593TWR8Wfrxe_AUVgsVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816926563</pqid></control><display><type>article</type><title>A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Waaijers, Selma ; Muñoz, Javier ; Berends, Christian ; Ramalho, João J ; Goerdayal, Soenita S ; Low, Teck Y ; Zoumaro-Djayoon, Adja D ; Hoffmann, Michael ; Koorman, Thijs ; Tas, Roderick P ; Harterink, Martin ; Seelk, Stefanie ; Kerver, Jana ; Hoogenraad, Casper C ; Bossinger, Olaf ; Tursun, Baris ; van den Heuvel, Sander ; Heck, Albert J R ; Boxem, Mike</creator><creatorcontrib>Waaijers, Selma ; Muñoz, Javier ; Berends, Christian ; Ramalho, João J ; Goerdayal, Soenita S ; Low, Teck Y ; Zoumaro-Djayoon, Adja D ; Hoffmann, Michael ; Koorman, Thijs ; Tas, Roderick P ; Harterink, Martin ; Seelk, Stefanie ; Kerver, Jana ; Hoogenraad, Casper C ; Bossinger, Olaf ; Tursun, Baris ; van den Heuvel, Sander ; Heck, Albert J R ; Boxem, Mike</creatorcontrib><description>Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.</description><identifier>ISSN: 1741-7007</identifier><identifier>EISSN: 1741-7007</identifier><identifier>DOI: 10.1186/s12915-016-0286-x</identifier><identifier>PMID: 27506200</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Amino Acid Sequence ; Animals ; Biology ; Biotinylation ; Caenorhabditis elegans ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - isolation &amp; purification ; Caenorhabditis elegans Proteins - metabolism ; Fluorescent Antibody Technique ; Guanylate Kinases - metabolism ; Health aspects ; Mass spectrometry ; Methodology ; Methods ; Multiprotein Complexes - isolation &amp; purification ; Neurons - metabolism ; Organ Specificity ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Interaction Mapping - methods ; Protein Transport ; Protein-protein interactions ; Reproducibility of Results</subject><ispartof>BMC biology, 2016-08, Vol.14 (1), p.66-66, Article 66</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>Waaijers et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-c60f4f9655624c223cb28af1e34f67eb2d3b5a54abf2a82bcee3939f54039aec3</citedby><cites>FETCH-LOGICAL-c455t-c60f4f9655624c223cb28af1e34f67eb2d3b5a54abf2a82bcee3939f54039aec3</cites><orcidid>0000-0003-3966-4173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977824/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977824/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27506200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waaijers, Selma</creatorcontrib><creatorcontrib>Muñoz, Javier</creatorcontrib><creatorcontrib>Berends, Christian</creatorcontrib><creatorcontrib>Ramalho, João J</creatorcontrib><creatorcontrib>Goerdayal, Soenita S</creatorcontrib><creatorcontrib>Low, Teck Y</creatorcontrib><creatorcontrib>Zoumaro-Djayoon, Adja D</creatorcontrib><creatorcontrib>Hoffmann, Michael</creatorcontrib><creatorcontrib>Koorman, Thijs</creatorcontrib><creatorcontrib>Tas, Roderick P</creatorcontrib><creatorcontrib>Harterink, Martin</creatorcontrib><creatorcontrib>Seelk, Stefanie</creatorcontrib><creatorcontrib>Kerver, Jana</creatorcontrib><creatorcontrib>Hoogenraad, Casper C</creatorcontrib><creatorcontrib>Bossinger, Olaf</creatorcontrib><creatorcontrib>Tursun, Baris</creatorcontrib><creatorcontrib>van den Heuvel, Sander</creatorcontrib><creatorcontrib>Heck, Albert J R</creatorcontrib><creatorcontrib>Boxem, Mike</creatorcontrib><title>A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large</title><title>BMC biology</title><addtitle>BMC Biol</addtitle><description>Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biology</subject><subject>Biotinylation</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - isolation &amp; purification</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Fluorescent Antibody Technique</subject><subject>Guanylate Kinases - metabolism</subject><subject>Health aspects</subject><subject>Mass spectrometry</subject><subject>Methodology</subject><subject>Methods</subject><subject>Multiprotein Complexes - isolation &amp; purification</subject><subject>Neurons - metabolism</subject><subject>Organ Specificity</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Transport</subject><subject>Protein-protein interactions</subject><subject>Reproducibility of Results</subject><issn>1741-7007</issn><issn>1741-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkktv1DAUhSMEoqXwA9ggS2zYhPoR28kGaTSlBWkkNrC2bjzXM64ydrCTqt3zw3E6pRRWftzvHN8rn6p6y-hHxlp1nhnvmKwpUzXlrapvn1WnTDes1pTq50_2J9WrnK8p5VJr8bI64VpSxSk9rX6tyORznrHOI1rvvCVjihP6QMY5LWeYfAwExnINdk9KYQ0YYtpDv_VFS3DAHYRM_BbDVBSYSYg3OBR0wgT2Xj9CmgKmTKIjF5urmp1f-GwzGSDt8HX1wsGQ8c3Delb9uPz8ff2l3ny7-rpebWrbSDnVVlHXuE5JqXhjORe25y04hqJxSmPPt6KXIBvoHYeW9xZRdKJzsqGiA7TirPp09B3n_oBbW_pNMJgx-QOkOxPBm38rwe_NLt6YptO65U0x-PBgkOLPGfNkDmUKHAYIGOdsWMtoqzrFu4K-_w-9jnMKZbyFUh1XUom_1A4GND64WN61i6lZNaptmVZaFYodKZtizgndY8uMmiUJ5pgEU5JgliSY26J593TWR8Wfrxe_AUVgsVo</recordid><startdate>20160809</startdate><enddate>20160809</enddate><creator>Waaijers, Selma</creator><creator>Muñoz, Javier</creator><creator>Berends, Christian</creator><creator>Ramalho, João J</creator><creator>Goerdayal, Soenita S</creator><creator>Low, Teck Y</creator><creator>Zoumaro-Djayoon, Adja D</creator><creator>Hoffmann, Michael</creator><creator>Koorman, Thijs</creator><creator>Tas, Roderick P</creator><creator>Harterink, Martin</creator><creator>Seelk, Stefanie</creator><creator>Kerver, Jana</creator><creator>Hoogenraad, Casper C</creator><creator>Bossinger, Olaf</creator><creator>Tursun, Baris</creator><creator>van den Heuvel, Sander</creator><creator>Heck, Albert J R</creator><creator>Boxem, Mike</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3966-4173</orcidid></search><sort><creationdate>20160809</creationdate><title>A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large</title><author>Waaijers, Selma ; Muñoz, Javier ; Berends, Christian ; Ramalho, João J ; Goerdayal, Soenita S ; Low, Teck Y ; Zoumaro-Djayoon, Adja D ; Hoffmann, Michael ; Koorman, Thijs ; Tas, Roderick P ; Harterink, Martin ; Seelk, Stefanie ; Kerver, Jana ; Hoogenraad, Casper C ; Bossinger, Olaf ; Tursun, Baris ; van den Heuvel, Sander ; Heck, Albert J R ; Boxem, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-c60f4f9655624c223cb28af1e34f67eb2d3b5a54abf2a82bcee3939f54039aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biology</topic><topic>Biotinylation</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - isolation &amp; purification</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Fluorescent Antibody Technique</topic><topic>Guanylate Kinases - metabolism</topic><topic>Health aspects</topic><topic>Mass spectrometry</topic><topic>Methodology</topic><topic>Methods</topic><topic>Multiprotein Complexes - isolation &amp; purification</topic><topic>Neurons - metabolism</topic><topic>Organ Specificity</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Transport</topic><topic>Protein-protein interactions</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waaijers, Selma</creatorcontrib><creatorcontrib>Muñoz, Javier</creatorcontrib><creatorcontrib>Berends, Christian</creatorcontrib><creatorcontrib>Ramalho, João J</creatorcontrib><creatorcontrib>Goerdayal, Soenita S</creatorcontrib><creatorcontrib>Low, Teck Y</creatorcontrib><creatorcontrib>Zoumaro-Djayoon, Adja D</creatorcontrib><creatorcontrib>Hoffmann, Michael</creatorcontrib><creatorcontrib>Koorman, Thijs</creatorcontrib><creatorcontrib>Tas, Roderick P</creatorcontrib><creatorcontrib>Harterink, Martin</creatorcontrib><creatorcontrib>Seelk, Stefanie</creatorcontrib><creatorcontrib>Kerver, Jana</creatorcontrib><creatorcontrib>Hoogenraad, Casper C</creatorcontrib><creatorcontrib>Bossinger, Olaf</creatorcontrib><creatorcontrib>Tursun, Baris</creatorcontrib><creatorcontrib>van den Heuvel, Sander</creatorcontrib><creatorcontrib>Heck, Albert J R</creatorcontrib><creatorcontrib>Boxem, Mike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waaijers, Selma</au><au>Muñoz, Javier</au><au>Berends, Christian</au><au>Ramalho, João J</au><au>Goerdayal, Soenita S</au><au>Low, Teck Y</au><au>Zoumaro-Djayoon, Adja D</au><au>Hoffmann, Michael</au><au>Koorman, Thijs</au><au>Tas, Roderick P</au><au>Harterink, Martin</au><au>Seelk, Stefanie</au><au>Kerver, Jana</au><au>Hoogenraad, Casper C</au><au>Bossinger, Olaf</au><au>Tursun, Baris</au><au>van den Heuvel, Sander</au><au>Heck, Albert J R</au><au>Boxem, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large</atitle><jtitle>BMC biology</jtitle><addtitle>BMC Biol</addtitle><date>2016-08-09</date><risdate>2016</risdate><volume>14</volume><issue>1</issue><spage>66</spage><epage>66</epage><pages>66-66</pages><artnum>66</artnum><issn>1741-7007</issn><eissn>1741-7007</eissn><abstract>Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27506200</pmid><doi>10.1186/s12915-016-0286-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3966-4173</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-7007
ispartof BMC biology, 2016-08, Vol.14 (1), p.66-66, Article 66
issn 1741-7007
1741-7007
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4977824
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects Amino Acid Sequence
Animals
Biology
Biotinylation
Caenorhabditis elegans
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - isolation & purification
Caenorhabditis elegans Proteins - metabolism
Fluorescent Antibody Technique
Guanylate Kinases - metabolism
Health aspects
Mass spectrometry
Methodology
Methods
Multiprotein Complexes - isolation & purification
Neurons - metabolism
Organ Specificity
Protein Binding
Protein Interaction Domains and Motifs
Protein Interaction Mapping - methods
Protein Transport
Protein-protein interactions
Reproducibility of Results
title A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tissue-specific%20protein%20purification%20approach%20in%20Caenorhabditis%20elegans%20identifies%20novel%20interaction%20partners%20of%20DLG-1/Discs%20large&rft.jtitle=BMC%20biology&rft.au=Waaijers,%20Selma&rft.date=2016-08-09&rft.volume=14&rft.issue=1&rft.spage=66&rft.epage=66&rft.pages=66-66&rft.artnum=66&rft.issn=1741-7007&rft.eissn=1741-7007&rft_id=info:doi/10.1186/s12915-016-0286-x&rft_dat=%3Cgale_pubme%3EA468817676%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816926563&rft_id=info:pmid/27506200&rft_galeid=A468817676&rfr_iscdi=true