Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system

As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-08, Vol.6 (1), p.31048-31048, Article 31048
Hauptverfasser: Xu, Guang-Bao, Yang, Ying-Hui, Wen, Qiao-Yan, Qin, Su-Juan, Gao, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31048
container_issue 1
container_start_page 31048
container_title Scientific reports
container_volume 6
creator Xu, Guang-Bao
Yang, Ying-Hui
Wen, Qiao-Yan
Qin, Su-Juan
Gao, Fei
description As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m  ⊗  n ( m  ≥ 3 and n  ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m  ⊗  n ( m  ≥ 3 and n  ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.
doi_str_mv 10.1038/srep31048
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4977494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1810557134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4aaff57174eede0c0f24132e0a834a849c7d131a643fc40c3844b8dfbf9d7dcc3</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMobsxd-Aek4I0K03ycru2NIMMvGHij4F1I07TLaJsuSYX9ezM2x9Rzk8B5ePOQF6Fzgm8JZumds6pjBEN6hIYUQzyhjNLjg_sAjZ1b4jAxzYBkp2hAkxizKYMh-pwbKep6Hem20M7rtuq1W4i8VpGxfmEq04o66qwpeumjXDjlAhoJm2tvhV1Hue6E9dqraNWL1vdN5NbOq-YMnZSidmq8O0fo4-nxffYymb89v84e5hMJLPUTEKIs44QkoFShsMQlBcKowiJlIFLIZFIQRsQUWCkBS5YC5GlR5mVWJIWUbITut7ldnzeqkKoNXjXvrG6CHjdC89-bVi94Zb44ZEkCGYSAq12ANateOc8b7aSqa9Eq0ztOUoLjYMg26OUfdGl6Gz4oUBmmwMKQQF1vKWmNC-2UexmC-aYyvq8ssBeH9nvyp6AA3GwBF1ZtpezBk__SvgE50qLD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902433331</pqid></control><display><type>article</type><title>Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Guang-Bao ; Yang, Ying-Hui ; Wen, Qiao-Yan ; Qin, Su-Juan ; Gao, Fei</creator><creatorcontrib>Xu, Guang-Bao ; Yang, Ying-Hui ; Wen, Qiao-Yan ; Qin, Su-Juan ; Gao, Fei</creatorcontrib><description>As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m  ⊗  n ( m  ≥ 3 and n  ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m  ⊗  n ( m  ≥ 3 and n  ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep31048</identifier><identifier>PMID: 27503634</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/766/483/481 ; Attorneys ; Banking industry ; Humanities and Social Sciences ; multidisciplinary ; Science</subject><ispartof>Scientific reports, 2016-08, Vol.6 (1), p.31048-31048, Article 31048</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4aaff57174eede0c0f24132e0a834a849c7d131a643fc40c3844b8dfbf9d7dcc3</citedby><cites>FETCH-LOGICAL-c438t-4aaff57174eede0c0f24132e0a834a849c7d131a643fc40c3844b8dfbf9d7dcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977494/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977494/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27503634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Guang-Bao</creatorcontrib><creatorcontrib>Yang, Ying-Hui</creatorcontrib><creatorcontrib>Wen, Qiao-Yan</creatorcontrib><creatorcontrib>Qin, Su-Juan</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><title>Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m  ⊗  n ( m  ≥ 3 and n  ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m  ⊗  n ( m  ≥ 3 and n  ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.</description><subject>639/705/1041</subject><subject>639/766/483/481</subject><subject>Attorneys</subject><subject>Banking industry</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMobsxd-Aek4I0K03ycru2NIMMvGHij4F1I07TLaJsuSYX9ezM2x9Rzk8B5ePOQF6Fzgm8JZumds6pjBEN6hIYUQzyhjNLjg_sAjZ1b4jAxzYBkp2hAkxizKYMh-pwbKep6Hem20M7rtuq1W4i8VpGxfmEq04o66qwpeumjXDjlAhoJm2tvhV1Hue6E9dqraNWL1vdN5NbOq-YMnZSidmq8O0fo4-nxffYymb89v84e5hMJLPUTEKIs44QkoFShsMQlBcKowiJlIFLIZFIQRsQUWCkBS5YC5GlR5mVWJIWUbITut7ldnzeqkKoNXjXvrG6CHjdC89-bVi94Zb44ZEkCGYSAq12ANateOc8b7aSqa9Eq0ztOUoLjYMg26OUfdGl6Gz4oUBmmwMKQQF1vKWmNC-2UexmC-aYyvq8ssBeH9nvyp6AA3GwBF1ZtpezBk__SvgE50qLD</recordid><startdate>20160809</startdate><enddate>20160809</enddate><creator>Xu, Guang-Bao</creator><creator>Yang, Ying-Hui</creator><creator>Wen, Qiao-Yan</creator><creator>Qin, Su-Juan</creator><creator>Gao, Fei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160809</creationdate><title>Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system</title><author>Xu, Guang-Bao ; Yang, Ying-Hui ; Wen, Qiao-Yan ; Qin, Su-Juan ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4aaff57174eede0c0f24132e0a834a849c7d131a643fc40c3844b8dfbf9d7dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/705/1041</topic><topic>639/766/483/481</topic><topic>Attorneys</topic><topic>Banking industry</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guang-Bao</creatorcontrib><creatorcontrib>Yang, Ying-Hui</creatorcontrib><creatorcontrib>Wen, Qiao-Yan</creatorcontrib><creatorcontrib>Qin, Su-Juan</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guang-Bao</au><au>Yang, Ying-Hui</au><au>Wen, Qiao-Yan</au><au>Qin, Su-Juan</au><au>Gao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-08-09</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>31048</spage><epage>31048</epage><pages>31048-31048</pages><artnum>31048</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m  ⊗  n ( m  ≥ 3 and n  ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m  ⊗  n ( m  ≥ 3 and n  ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27503634</pmid><doi>10.1038/srep31048</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-08, Vol.6 (1), p.31048-31048, Article 31048
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4977494
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/705/1041
639/766/483/481
Attorneys
Banking industry
Humanities and Social Sciences
multidisciplinary
Science
title Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20indistinguishable%20orthogonal%20product%20bases%20in%20arbitrary%20bipartite%20quantum%20system&rft.jtitle=Scientific%20reports&rft.au=Xu,%20Guang-Bao&rft.date=2016-08-09&rft.volume=6&rft.issue=1&rft.spage=31048&rft.epage=31048&rft.pages=31048-31048&rft.artnum=31048&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep31048&rft_dat=%3Cproquest_pubme%3E1810557134%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902433331&rft_id=info:pmid/27503634&rfr_iscdi=true