Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances
We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limit...
Gespeichert in:
Veröffentlicht in: | Nanoscale research letters 2016-12, Vol.11 (1), p.355-7, Article 355 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 355 |
container_title | Nanoscale research letters |
container_volume | 11 |
creator | van Sebille, Martijn Allebrandi, Jort Quik, Jim van Swaaij, René A.C. M. M. Tichelaar, Frans D. Zeman, Miro |
description | We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step. |
doi_str_mv | 10.1186/s11671-016-1567-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4974215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815706271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</originalsourceid><addsrcrecordid>eNqNkk-LFDEQxRtR3HX1A3iRBi9eolVJJzV9EWRddWHZOajgLeTfjFm602PSs7h-ejPMOqyCsKeEql9eUS-vaZ4jvEZcqDcFUREyQMVQKmLqQXOMUirGSX17WO-9QEaSxFHzpJQrgI6A1OPmiFPX8070x83lcjPHMf6Kad1-jkN0U2qXP6MP7dlog_fBH8qXJk0u35TZDO15mkNmG5Pn6IbQvo-1mlwoT5tHKzOU8Oz2PGm-fjj7cvqJXSw_np--u2BOCjUz20nwnaSFUwgIICQXwVLwAUAp6wUFaxyX3DjvFaIV1nHouJHGr3orxEnzdq-72doxeBfSnM2gNzmOJt_oyUT9dyfF73o9Xeuup46jrAKvbgXy9GMbyqzHWFwYBpPCtC0aF6IaCVziPVCUBIrTfVDoFZDoVUVf_oNeTducqmmVkgviRLDbE_eUy1MpOawOKyLoXQb0PgO6ZkDvMqB3yi_uenN48efTK8D3QKmttA75zuj_qv4GBSi8UA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858727703</pqid></control><display><type>article</type><title>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>van Sebille, Martijn ; Allebrandi, Jort ; Quik, Jim ; van Swaaij, René A.C. M. M. ; Tichelaar, Frans D. ; Zeman, Miro</creator><creatorcontrib>van Sebille, Martijn ; Allebrandi, Jort ; Quik, Jim ; van Swaaij, René A.C. M. M. ; Tichelaar, Frans D. ; Zeman, Miro</creatorcontrib><description>We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-016-1567-6</identifier><identifier>PMID: 27492439</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Chemistry and Materials Science ; Density ; Materials Science ; Mathematical analysis ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanocrystals ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Optimization ; Silicon ; Silicon oxides ; Stoichiometry</subject><ispartof>Nanoscale research letters, 2016-12, Vol.11 (1), p.355-7, Article 355</ispartof><rights>The Author(s) 2016</rights><rights>Nanoscale Research Letters is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</citedby><cites>FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27492439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Sebille, Martijn</creatorcontrib><creatorcontrib>Allebrandi, Jort</creatorcontrib><creatorcontrib>Quik, Jim</creatorcontrib><creatorcontrib>van Swaaij, René A.C. M. M.</creatorcontrib><creatorcontrib>Tichelaar, Frans D.</creatorcontrib><creatorcontrib>Zeman, Miro</creatorcontrib><title>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step.</description><subject>Annealing</subject><subject>Chemistry and Materials Science</subject><subject>Density</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanocrystals</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optimization</subject><subject>Silicon</subject><subject>Silicon oxides</subject><subject>Stoichiometry</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk-LFDEQxRtR3HX1A3iRBi9eolVJJzV9EWRddWHZOajgLeTfjFm602PSs7h-ejPMOqyCsKeEql9eUS-vaZ4jvEZcqDcFUREyQMVQKmLqQXOMUirGSX17WO-9QEaSxFHzpJQrgI6A1OPmiFPX8070x83lcjPHMf6Kad1-jkN0U2qXP6MP7dlog_fBH8qXJk0u35TZDO15mkNmG5Pn6IbQvo-1mlwoT5tHKzOU8Oz2PGm-fjj7cvqJXSw_np--u2BOCjUz20nwnaSFUwgIICQXwVLwAUAp6wUFaxyX3DjvFaIV1nHouJHGr3orxEnzdq-72doxeBfSnM2gNzmOJt_oyUT9dyfF73o9Xeuup46jrAKvbgXy9GMbyqzHWFwYBpPCtC0aF6IaCVziPVCUBIrTfVDoFZDoVUVf_oNeTducqmmVkgviRLDbE_eUy1MpOawOKyLoXQb0PgO6ZkDvMqB3yi_uenN48efTK8D3QKmttA75zuj_qv4GBSi8UA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>van Sebille, Martijn</creator><creator>Allebrandi, Jort</creator><creator>Quik, Jim</creator><creator>van Swaaij, René A.C. M. M.</creator><creator>Tichelaar, Frans D.</creator><creator>Zeman, Miro</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</title><author>van Sebille, Martijn ; Allebrandi, Jort ; Quik, Jim ; van Swaaij, René A.C. M. M. ; Tichelaar, Frans D. ; Zeman, Miro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Chemistry and Materials Science</topic><topic>Density</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanocrystals</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optimization</topic><topic>Silicon</topic><topic>Silicon oxides</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Sebille, Martijn</creatorcontrib><creatorcontrib>Allebrandi, Jort</creatorcontrib><creatorcontrib>Quik, Jim</creatorcontrib><creatorcontrib>van Swaaij, René A.C. M. M.</creatorcontrib><creatorcontrib>Tichelaar, Frans D.</creatorcontrib><creatorcontrib>Zeman, Miro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Sebille, Martijn</au><au>Allebrandi, Jort</au><au>Quik, Jim</au><au>van Swaaij, René A.C. M. M.</au><au>Tichelaar, Frans D.</au><au>Zeman, Miro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>355</spage><epage>7</epage><pages>355-7</pages><artnum>355</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27492439</pmid><doi>10.1186/s11671-016-1567-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2016-12, Vol.11 (1), p.355-7, Article 355 |
issn | 1931-7573 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4974215 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Annealing Chemistry and Materials Science Density Materials Science Mathematical analysis Molecular Medicine Nano Express Nanochemistry Nanocrystals Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optimization Silicon Silicon oxides Stoichiometry |
title | Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Silicon%20Oxide%20Embedded%20Silicon%20Nanocrystal%20Inter-particle%20Distances&rft.jtitle=Nanoscale%20research%20letters&rft.au=van%20Sebille,%20Martijn&rft.date=2016-12-01&rft.volume=11&rft.issue=1&rft.spage=355&rft.epage=7&rft.pages=355-7&rft.artnum=355&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-016-1567-6&rft_dat=%3Cproquest_pubme%3E1815706271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858727703&rft_id=info:pmid/27492439&rfr_iscdi=true |