Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances

We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale research letters 2016-12, Vol.11 (1), p.355-7, Article 355
Hauptverfasser: van Sebille, Martijn, Allebrandi, Jort, Quik, Jim, van Swaaij, René A.C. M. M., Tichelaar, Frans D., Zeman, Miro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 355
container_title Nanoscale research letters
container_volume 11
creator van Sebille, Martijn
Allebrandi, Jort
Quik, Jim
van Swaaij, René A.C. M. M.
Tichelaar, Frans D.
Zeman, Miro
description We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step.
doi_str_mv 10.1186/s11671-016-1567-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4974215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815706271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</originalsourceid><addsrcrecordid>eNqNkk-LFDEQxRtR3HX1A3iRBi9eolVJJzV9EWRddWHZOajgLeTfjFm602PSs7h-ejPMOqyCsKeEql9eUS-vaZ4jvEZcqDcFUREyQMVQKmLqQXOMUirGSX17WO-9QEaSxFHzpJQrgI6A1OPmiFPX8070x83lcjPHMf6Kad1-jkN0U2qXP6MP7dlog_fBH8qXJk0u35TZDO15mkNmG5Pn6IbQvo-1mlwoT5tHKzOU8Oz2PGm-fjj7cvqJXSw_np--u2BOCjUz20nwnaSFUwgIICQXwVLwAUAp6wUFaxyX3DjvFaIV1nHouJHGr3orxEnzdq-72doxeBfSnM2gNzmOJt_oyUT9dyfF73o9Xeuup46jrAKvbgXy9GMbyqzHWFwYBpPCtC0aF6IaCVziPVCUBIrTfVDoFZDoVUVf_oNeTducqmmVkgviRLDbE_eUy1MpOawOKyLoXQb0PgO6ZkDvMqB3yi_uenN48efTK8D3QKmttA75zuj_qv4GBSi8UA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858727703</pqid></control><display><type>article</type><title>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>van Sebille, Martijn ; Allebrandi, Jort ; Quik, Jim ; van Swaaij, René A.C. M. M. ; Tichelaar, Frans D. ; Zeman, Miro</creator><creatorcontrib>van Sebille, Martijn ; Allebrandi, Jort ; Quik, Jim ; van Swaaij, René A.C. M. M. ; Tichelaar, Frans D. ; Zeman, Miro</creatorcontrib><description>We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-016-1567-6</identifier><identifier>PMID: 27492439</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Chemistry and Materials Science ; Density ; Materials Science ; Mathematical analysis ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanocrystals ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Optimization ; Silicon ; Silicon oxides ; Stoichiometry</subject><ispartof>Nanoscale research letters, 2016-12, Vol.11 (1), p.355-7, Article 355</ispartof><rights>The Author(s) 2016</rights><rights>Nanoscale Research Letters is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</citedby><cites>FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27492439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Sebille, Martijn</creatorcontrib><creatorcontrib>Allebrandi, Jort</creatorcontrib><creatorcontrib>Quik, Jim</creatorcontrib><creatorcontrib>van Swaaij, René A.C. M. M.</creatorcontrib><creatorcontrib>Tichelaar, Frans D.</creatorcontrib><creatorcontrib>Zeman, Miro</creatorcontrib><title>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step.</description><subject>Annealing</subject><subject>Chemistry and Materials Science</subject><subject>Density</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanocrystals</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optimization</subject><subject>Silicon</subject><subject>Silicon oxides</subject><subject>Stoichiometry</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk-LFDEQxRtR3HX1A3iRBi9eolVJJzV9EWRddWHZOajgLeTfjFm602PSs7h-ejPMOqyCsKeEql9eUS-vaZ4jvEZcqDcFUREyQMVQKmLqQXOMUirGSX17WO-9QEaSxFHzpJQrgI6A1OPmiFPX8070x83lcjPHMf6Kad1-jkN0U2qXP6MP7dlog_fBH8qXJk0u35TZDO15mkNmG5Pn6IbQvo-1mlwoT5tHKzOU8Oz2PGm-fjj7cvqJXSw_np--u2BOCjUz20nwnaSFUwgIICQXwVLwAUAp6wUFaxyX3DjvFaIV1nHouJHGr3orxEnzdq-72doxeBfSnM2gNzmOJt_oyUT9dyfF73o9Xeuup46jrAKvbgXy9GMbyqzHWFwYBpPCtC0aF6IaCVziPVCUBIrTfVDoFZDoVUVf_oNeTducqmmVkgviRLDbE_eUy1MpOawOKyLoXQb0PgO6ZkDvMqB3yi_uenN48efTK8D3QKmttA75zuj_qv4GBSi8UA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>van Sebille, Martijn</creator><creator>Allebrandi, Jort</creator><creator>Quik, Jim</creator><creator>van Swaaij, René A.C. M. M.</creator><creator>Tichelaar, Frans D.</creator><creator>Zeman, Miro</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</title><author>van Sebille, Martijn ; Allebrandi, Jort ; Quik, Jim ; van Swaaij, René A.C. M. M. ; Tichelaar, Frans D. ; Zeman, Miro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b450d4578c6101003523eb7ede0066bd37ebac252acdd611b3bc2042a5adf9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Chemistry and Materials Science</topic><topic>Density</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanocrystals</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optimization</topic><topic>Silicon</topic><topic>Silicon oxides</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Sebille, Martijn</creatorcontrib><creatorcontrib>Allebrandi, Jort</creatorcontrib><creatorcontrib>Quik, Jim</creatorcontrib><creatorcontrib>van Swaaij, René A.C. M. M.</creatorcontrib><creatorcontrib>Tichelaar, Frans D.</creatorcontrib><creatorcontrib>Zeman, Miro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Sebille, Martijn</au><au>Allebrandi, Jort</au><au>Quik, Jim</au><au>van Swaaij, René A.C. M. M.</au><au>Tichelaar, Frans D.</au><au>Zeman, Miro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>355</spage><epage>7</epage><pages>355-7</pages><artnum>355</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27492439</pmid><doi>10.1186/s11671-016-1567-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2016-12, Vol.11 (1), p.355-7, Article 355
issn 1931-7573
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4974215
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Annealing
Chemistry and Materials Science
Density
Materials Science
Mathematical analysis
Molecular Medicine
Nano Express
Nanochemistry
Nanocrystals
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optimization
Silicon
Silicon oxides
Stoichiometry
title Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Silicon%20Oxide%20Embedded%20Silicon%20Nanocrystal%20Inter-particle%20Distances&rft.jtitle=Nanoscale%20research%20letters&rft.au=van%20Sebille,%20Martijn&rft.date=2016-12-01&rft.volume=11&rft.issue=1&rft.spage=355&rft.epage=7&rft.pages=355-7&rft.artnum=355&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-016-1567-6&rft_dat=%3Cproquest_pubme%3E1815706271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858727703&rft_id=info:pmid/27492439&rfr_iscdi=true