Rescuing failed oral implants via Wnt activation

Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over‐siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical periodontology 2016-02, Vol.43 (2), p.180-192
Hauptverfasser: Yin, Xing, Li, Jingtao, Chen, Tao, Mouraret, Sylvain, Dhamdhere, Girija, Brunski, John B., Zou, Shujuan, Helms, Jill A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 180
container_title Journal of clinical periodontology
container_volume 43
creator Yin, Xing
Li, Jingtao
Chen, Tao
Mouraret, Sylvain
Dhamdhere, Girija
Brunski, John B.
Zou, Shujuan
Helms, Jill A.
description Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over‐sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri‐implant bone. After fibrous encapsulation was established peri‐implant injections of a liposomal formulation of WNT3A protein (L‐WNT3A) or liposomal PBS (L‐PBS) were then initiated. Quantitative assays were employed to analyse the effects of L‐WNT3A treatment. Results Implants in gap‐type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L‐WNT3A or L‐PBS injections were initiated. L‐WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri‐implant environment, cell proliferation and osteogenic protein expression. The amount of peri‐implant bone and bone in contact with the implant were significantly higher in L‐WNT3A cases. Conclusions These data demonstrate L‐WNT3A can induce peri‐implant bone formation even in cases where fibrous encapsulation predominates.
doi_str_mv 10.1111/jcpe.12503
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4973628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770219755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4343-5812e14e2ddc9513ba818bdb2e8a9b82086a0060d803120aa0f98b55b6a408213</originalsourceid><addsrcrecordid>eNqFkctO3DAUhq2qqEyHbvoAKFI3FVKm59jxbVOpGgFlQEBvgp3lJB7wNJMMcTItb8Oz8GSYDoygi9YbL_ydX-f3R8hbhBHG82FWLNwIKQf2ggxQAKTA8fwlGQADlgot9SZ5HcIMACVj7BXZpEKiAqQDgl9dKHpfXyRT6ytXJk1rq8TPF5Wtu5Asvb29Oau7xBadX9rON_UW2ZjaKrg3D_eQ_Njb_T7-nB6d7B-MPx2lRcYylnKF1GHmaFkWmiPLrUKVlzl1yupcUVDCAggoFTCkYC1Mtco5z4XNQFFkQ_Jxlbvo87krC1d3cTWzaP3cttemsd48f6n9pblolibTkgmqYsD7h4C2uepd6Mzch8JVsZlr-mBQo9Yiy5D9H5USKGrJeUTf_YXOmr6t409ESugMUMdGQ7Kzooq2CaF10_XeCOZemrmXZv5Ii_D206Zr9NFSBHAF_IqKrv8RZSbj093H0HQ140Pnfq9nbPvTCMkkN2fH-0ZO9Je988NvhrI7wCavvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1769401980</pqid></control><display><type>article</type><title>Rescuing failed oral implants via Wnt activation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yin, Xing ; Li, Jingtao ; Chen, Tao ; Mouraret, Sylvain ; Dhamdhere, Girija ; Brunski, John B. ; Zou, Shujuan ; Helms, Jill A.</creator><creatorcontrib>Yin, Xing ; Li, Jingtao ; Chen, Tao ; Mouraret, Sylvain ; Dhamdhere, Girija ; Brunski, John B. ; Zou, Shujuan ; Helms, Jill A.</creatorcontrib><description>Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over‐sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri‐implant bone. After fibrous encapsulation was established peri‐implant injections of a liposomal formulation of WNT3A protein (L‐WNT3A) or liposomal PBS (L‐PBS) were then initiated. Quantitative assays were employed to analyse the effects of L‐WNT3A treatment. Results Implants in gap‐type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L‐WNT3A or L‐PBS injections were initiated. L‐WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri‐implant environment, cell proliferation and osteogenic protein expression. The amount of peri‐implant bone and bone in contact with the implant were significantly higher in L‐WNT3A cases. Conclusions These data demonstrate L‐WNT3A can induce peri‐implant bone formation even in cases where fibrous encapsulation predominates.</description><identifier>ISSN: 0303-6979</identifier><identifier>EISSN: 1600-051X</identifier><identifier>DOI: 10.1111/jcpe.12503</identifier><identifier>PMID: 26718012</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; biomechanics ; Dental Implants ; Dentistry ; fibrosis ; finite element analysis ; Male ; Mice ; Osseointegration ; Osteogenesis ; Proteins ; Surface Properties ; Titanium ; Transplants &amp; implants ; Wnt Proteins</subject><ispartof>Journal of clinical periodontology, 2016-02, Vol.43 (2), p.180-192</ispartof><rights>2015 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2015 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4343-5812e14e2ddc9513ba818bdb2e8a9b82086a0060d803120aa0f98b55b6a408213</citedby><cites>FETCH-LOGICAL-c4343-5812e14e2ddc9513ba818bdb2e8a9b82086a0060d803120aa0f98b55b6a408213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjcpe.12503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjcpe.12503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26718012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Xing</creatorcontrib><creatorcontrib>Li, Jingtao</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Mouraret, Sylvain</creatorcontrib><creatorcontrib>Dhamdhere, Girija</creatorcontrib><creatorcontrib>Brunski, John B.</creatorcontrib><creatorcontrib>Zou, Shujuan</creatorcontrib><creatorcontrib>Helms, Jill A.</creatorcontrib><title>Rescuing failed oral implants via Wnt activation</title><title>Journal of clinical periodontology</title><addtitle>J Clin Periodontol</addtitle><description>Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over‐sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri‐implant bone. After fibrous encapsulation was established peri‐implant injections of a liposomal formulation of WNT3A protein (L‐WNT3A) or liposomal PBS (L‐PBS) were then initiated. Quantitative assays were employed to analyse the effects of L‐WNT3A treatment. Results Implants in gap‐type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L‐WNT3A or L‐PBS injections were initiated. L‐WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri‐implant environment, cell proliferation and osteogenic protein expression. The amount of peri‐implant bone and bone in contact with the implant were significantly higher in L‐WNT3A cases. Conclusions These data demonstrate L‐WNT3A can induce peri‐implant bone formation even in cases where fibrous encapsulation predominates.</description><subject>Animals</subject><subject>biomechanics</subject><subject>Dental Implants</subject><subject>Dentistry</subject><subject>fibrosis</subject><subject>finite element analysis</subject><subject>Male</subject><subject>Mice</subject><subject>Osseointegration</subject><subject>Osteogenesis</subject><subject>Proteins</subject><subject>Surface Properties</subject><subject>Titanium</subject><subject>Transplants &amp; implants</subject><subject>Wnt Proteins</subject><issn>0303-6979</issn><issn>1600-051X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctO3DAUhq2qqEyHbvoAKFI3FVKm59jxbVOpGgFlQEBvgp3lJB7wNJMMcTItb8Oz8GSYDoygi9YbL_ydX-f3R8hbhBHG82FWLNwIKQf2ggxQAKTA8fwlGQADlgot9SZ5HcIMACVj7BXZpEKiAqQDgl9dKHpfXyRT6ytXJk1rq8TPF5Wtu5Asvb29Oau7xBadX9rON_UW2ZjaKrg3D_eQ_Njb_T7-nB6d7B-MPx2lRcYylnKF1GHmaFkWmiPLrUKVlzl1yupcUVDCAggoFTCkYC1Mtco5z4XNQFFkQ_Jxlbvo87krC1d3cTWzaP3cttemsd48f6n9pblolibTkgmqYsD7h4C2uepd6Mzch8JVsZlr-mBQo9Yiy5D9H5USKGrJeUTf_YXOmr6t409ESugMUMdGQ7Kzooq2CaF10_XeCOZemrmXZv5Ii_D206Zr9NFSBHAF_IqKrv8RZSbj093H0HQ140Pnfq9nbPvTCMkkN2fH-0ZO9Je988NvhrI7wCavvw</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Yin, Xing</creator><creator>Li, Jingtao</creator><creator>Chen, Tao</creator><creator>Mouraret, Sylvain</creator><creator>Dhamdhere, Girija</creator><creator>Brunski, John B.</creator><creator>Zou, Shujuan</creator><creator>Helms, Jill A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201602</creationdate><title>Rescuing failed oral implants via Wnt activation</title><author>Yin, Xing ; Li, Jingtao ; Chen, Tao ; Mouraret, Sylvain ; Dhamdhere, Girija ; Brunski, John B. ; Zou, Shujuan ; Helms, Jill A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4343-5812e14e2ddc9513ba818bdb2e8a9b82086a0060d803120aa0f98b55b6a408213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>biomechanics</topic><topic>Dental Implants</topic><topic>Dentistry</topic><topic>fibrosis</topic><topic>finite element analysis</topic><topic>Male</topic><topic>Mice</topic><topic>Osseointegration</topic><topic>Osteogenesis</topic><topic>Proteins</topic><topic>Surface Properties</topic><topic>Titanium</topic><topic>Transplants &amp; implants</topic><topic>Wnt Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xing</creatorcontrib><creatorcontrib>Li, Jingtao</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Mouraret, Sylvain</creatorcontrib><creatorcontrib>Dhamdhere, Girija</creatorcontrib><creatorcontrib>Brunski, John B.</creatorcontrib><creatorcontrib>Zou, Shujuan</creatorcontrib><creatorcontrib>Helms, Jill A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical periodontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xing</au><au>Li, Jingtao</au><au>Chen, Tao</au><au>Mouraret, Sylvain</au><au>Dhamdhere, Girija</au><au>Brunski, John B.</au><au>Zou, Shujuan</au><au>Helms, Jill A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rescuing failed oral implants via Wnt activation</atitle><jtitle>Journal of clinical periodontology</jtitle><addtitle>J Clin Periodontol</addtitle><date>2016-02</date><risdate>2016</risdate><volume>43</volume><issue>2</issue><spage>180</spage><epage>192</epage><pages>180-192</pages><issn>0303-6979</issn><eissn>1600-051X</eissn><abstract>Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over‐sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri‐implant bone. After fibrous encapsulation was established peri‐implant injections of a liposomal formulation of WNT3A protein (L‐WNT3A) or liposomal PBS (L‐PBS) were then initiated. Quantitative assays were employed to analyse the effects of L‐WNT3A treatment. Results Implants in gap‐type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L‐WNT3A or L‐PBS injections were initiated. L‐WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri‐implant environment, cell proliferation and osteogenic protein expression. The amount of peri‐implant bone and bone in contact with the implant were significantly higher in L‐WNT3A cases. Conclusions These data demonstrate L‐WNT3A can induce peri‐implant bone formation even in cases where fibrous encapsulation predominates.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26718012</pmid><doi>10.1111/jcpe.12503</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6979
ispartof Journal of clinical periodontology, 2016-02, Vol.43 (2), p.180-192
issn 0303-6979
1600-051X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4973628
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
biomechanics
Dental Implants
Dentistry
fibrosis
finite element analysis
Male
Mice
Osseointegration
Osteogenesis
Proteins
Surface Properties
Titanium
Transplants & implants
Wnt Proteins
title Rescuing failed oral implants via Wnt activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rescuing%20failed%20oral%20implants%20via%C2%A0Wnt%20activation&rft.jtitle=Journal%20of%20clinical%20periodontology&rft.au=Yin,%20Xing&rft.date=2016-02&rft.volume=43&rft.issue=2&rft.spage=180&rft.epage=192&rft.pages=180-192&rft.issn=0303-6979&rft.eissn=1600-051X&rft_id=info:doi/10.1111/jcpe.12503&rft_dat=%3Cproquest_pubme%3E1770219755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1769401980&rft_id=info:pmid/26718012&rfr_iscdi=true