Activation of salt-inducible kinase 2 promotes the viability of peritoneal mesothelial cells exposed to stress of peritoneal dialysis

Maintaining mesothelial cell viability is critical to long-term successful peritoneal dialysis (PD) treatment. To clarify the viability mechanism of peritoneal mesothelial cells under PD solutions exposure, we examined the mechanisms of cellular response to this stress conditions. Here we report tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2016-07, Vol.7 (7), p.e2298-e2298
Hauptverfasser: Wang, H-H, Lin, C-Y, Su, S-H, Chuang, C-T, Chang, Y-L, Lee, T-Y, Lee, S-C, Chang, C-J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintaining mesothelial cell viability is critical to long-term successful peritoneal dialysis (PD) treatment. To clarify the viability mechanism of peritoneal mesothelial cells under PD solutions exposure, we examined the mechanisms of cellular response to this stress conditions. Here we report that the proteasome activity is inhibited when treated with PD solutions. Proteasome inhibition-mediated activation of salt-inducible kinase 2 (SIK2), an endoplasmic reticulum-resident protein, is important for mesothelial cell viability. SIK2 is mobilized to promote autophagy and protect the cells from apoptosis under PD solution or MG132 treatment. Immunofluorescence staining showed that SIK2 is colocalized with LC3B in the autophagosomes of mesothelial cells treated with PD solution or derived from patients undergoing PD treatment. SIK2 activation is likely via a two-step mechanism, upstream kinases relieving the autoinhibitory conformation of SIK2 molecule followed by autophosphorylation of Thr175 and activation of kinase activity. These results suggest that activation of SIK2 is required for the cell viability when proteasome activity is inhibited by PD solutions. Maintaining or boosting the activity of SIK2 may promote peritoneal mesothelial cell viability and evolve as a potential therapeutic target for maintaining or restoring peritoneal membrane integrity in PD therapy.
ISSN:2041-4889
2041-4889
DOI:10.1038/cddis.2016.79