Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease

The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2016-09, Vol.59 (9), p.1819-1831
Hauptverfasser: Pena, Michelle J., Mischak, Harald, Heerspink, Hiddo J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1831
container_issue 9
container_start_page 1819
container_title Diabetologia
container_volume 59
creator Pena, Michelle J.
Mischak, Harald
Heerspink, Hiddo J. L.
description The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice include the identification of individuals at risk of progressive kidney disease and those who would respond well to treatment, in order to tailor therapy for those at highest risk. However, while many proteomic biomarkers have been discovered, and even found to be predictive, most lack rigorous external validation in sufficiently powered studies with renal endpoints. Moreover, studies assessing short-term changes in the proteome for therapy-monitoring purposes are lacking. Collaborations between academia and industry and enhanced interactions with regulatory agencies are needed to design new, sufficiently powered studies to implement proteomics in clinical practice.
doi_str_mv 10.1007/s00125-016-4001-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4969331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4145695181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-fb0f31fa95aa88fed9f9d4339772151a055c4c44c7ed5f69bd0b186d30b396813</originalsourceid><addsrcrecordid>eNqNkcFrFDEUxoNY7Fr9A7zIgBcvY18mmUxyEaRoFQr1oOAtZJKXbepuMiazwv73ZrptqULBUx7v-70vefkIeUXhHQUYTgsA7foWqGh5LVv1hKwoZ10LvJNPyWqRWyrFj2PyvJRrAGA9F8_IcTcwzhmFFbFfc5oxbYMtjU-5mTK6YOeQYpN840JBU7B20zpjKUvbRNfUekqxCnNq5ivMZto3IVbcjDgH2_wMLuL-bvwFOfJmU_Dl7XlCvn_6-O3sc3txef7l7MNFa3uh5taP4Bn1RvXGSOnRKa8cZ0wNQ0d7aqDvLbec2wFd74UaHYx1OcdgZEpIyk7I-4PvtBu36CzGOZuNnnLYmrzXyQT9txLDlV6n35oroRhbDN7eGuT0a4dl1ttQLG42JmLaFU0lpVJSIdV_oCAFiKFf0Df_oNdpl2P9iRvDmkknWKXogbI5lZLR37-bgl7S1oe0dU1bL2nrxfn1w4XvJ-7irUB3AEqV4hrzg6sfdf0DUMy2Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811035263</pqid></control><display><type>article</type><title>Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pena, Michelle J. ; Mischak, Harald ; Heerspink, Hiddo J. L.</creator><creatorcontrib>Pena, Michelle J. ; Mischak, Harald ; Heerspink, Hiddo J. L.</creatorcontrib><description>The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice include the identification of individuals at risk of progressive kidney disease and those who would respond well to treatment, in order to tailor therapy for those at highest risk. However, while many proteomic biomarkers have been discovered, and even found to be predictive, most lack rigorous external validation in sufficiently powered studies with renal endpoints. Moreover, studies assessing short-term changes in the proteome for therapy-monitoring purposes are lacking. Collaborations between academia and industry and enhanced interactions with regulatory agencies are needed to design new, sufficiently powered studies to implement proteomics in clinical practice.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-016-4001-9</identifier><identifier>PMID: 27344310</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biomarkers - metabolism ; Diabetes Mellitus - metabolism ; Diabetes Mellitus - pathology ; Diabetic Nephropathies - metabolism ; Diabetic Nephropathies - pathology ; Disease Progression ; Human Physiology ; Humans ; Internal Medicine ; Kidney Diseases - metabolism ; Kidney Diseases - pathology ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Proteome - metabolism ; Proteomics - methods ; Review</subject><ispartof>Diabetologia, 2016-09, Vol.59 (9), p.1819-1831</ispartof><rights>The Author(s) 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-fb0f31fa95aa88fed9f9d4339772151a055c4c44c7ed5f69bd0b186d30b396813</citedby><cites>FETCH-LOGICAL-c569t-fb0f31fa95aa88fed9f9d4339772151a055c4c44c7ed5f69bd0b186d30b396813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-016-4001-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-016-4001-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,780,784,792,885,27922,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27344310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pena, Michelle J.</creatorcontrib><creatorcontrib>Mischak, Harald</creatorcontrib><creatorcontrib>Heerspink, Hiddo J. L.</creatorcontrib><title>Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice include the identification of individuals at risk of progressive kidney disease and those who would respond well to treatment, in order to tailor therapy for those at highest risk. However, while many proteomic biomarkers have been discovered, and even found to be predictive, most lack rigorous external validation in sufficiently powered studies with renal endpoints. Moreover, studies assessing short-term changes in the proteome for therapy-monitoring purposes are lacking. Collaborations between academia and industry and enhanced interactions with regulatory agencies are needed to design new, sufficiently powered studies to implement proteomics in clinical practice.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Diabetes Mellitus - pathology</subject><subject>Diabetic Nephropathies - metabolism</subject><subject>Diabetic Nephropathies - pathology</subject><subject>Disease Progression</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kidney Diseases - metabolism</subject><subject>Kidney Diseases - pathology</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Proteome - metabolism</subject><subject>Proteomics - methods</subject><subject>Review</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkcFrFDEUxoNY7Fr9A7zIgBcvY18mmUxyEaRoFQr1oOAtZJKXbepuMiazwv73ZrptqULBUx7v-70vefkIeUXhHQUYTgsA7foWqGh5LVv1hKwoZ10LvJNPyWqRWyrFj2PyvJRrAGA9F8_IcTcwzhmFFbFfc5oxbYMtjU-5mTK6YOeQYpN840JBU7B20zpjKUvbRNfUekqxCnNq5ivMZto3IVbcjDgH2_wMLuL-bvwFOfJmU_Dl7XlCvn_6-O3sc3txef7l7MNFa3uh5taP4Bn1RvXGSOnRKa8cZ0wNQ0d7aqDvLbec2wFd74UaHYx1OcdgZEpIyk7I-4PvtBu36CzGOZuNnnLYmrzXyQT9txLDlV6n35oroRhbDN7eGuT0a4dl1ttQLG42JmLaFU0lpVJSIdV_oCAFiKFf0Df_oNdpl2P9iRvDmkknWKXogbI5lZLR37-bgl7S1oe0dU1bL2nrxfn1w4XvJ-7irUB3AEqV4hrzg6sfdf0DUMy2Qw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Pena, Michelle J.</creator><creator>Mischak, Harald</creator><creator>Heerspink, Hiddo J. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease</title><author>Pena, Michelle J. ; Mischak, Harald ; Heerspink, Hiddo J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-fb0f31fa95aa88fed9f9d4339772151a055c4c44c7ed5f69bd0b186d30b396813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Diabetes Mellitus - pathology</topic><topic>Diabetic Nephropathies - metabolism</topic><topic>Diabetic Nephropathies - pathology</topic><topic>Disease Progression</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kidney Diseases - metabolism</topic><topic>Kidney Diseases - pathology</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Proteome - metabolism</topic><topic>Proteomics - methods</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pena, Michelle J.</creatorcontrib><creatorcontrib>Mischak, Harald</creatorcontrib><creatorcontrib>Heerspink, Hiddo J. L.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pena, Michelle J.</au><au>Mischak, Harald</au><au>Heerspink, Hiddo J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>59</volume><issue>9</issue><spage>1819</spage><epage>1831</epage><pages>1819-1831</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice include the identification of individuals at risk of progressive kidney disease and those who would respond well to treatment, in order to tailor therapy for those at highest risk. However, while many proteomic biomarkers have been discovered, and even found to be predictive, most lack rigorous external validation in sufficiently powered studies with renal endpoints. Moreover, studies assessing short-term changes in the proteome for therapy-monitoring purposes are lacking. Collaborations between academia and industry and enhanced interactions with regulatory agencies are needed to design new, sufficiently powered studies to implement proteomics in clinical practice.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27344310</pmid><doi>10.1007/s00125-016-4001-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2016-09, Vol.59 (9), p.1819-1831
issn 0012-186X
1432-0428
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4969331
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Biomarkers - metabolism
Diabetes Mellitus - metabolism
Diabetes Mellitus - pathology
Diabetic Nephropathies - metabolism
Diabetic Nephropathies - pathology
Disease Progression
Human Physiology
Humans
Internal Medicine
Kidney Diseases - metabolism
Kidney Diseases - pathology
Medicine
Medicine & Public Health
Metabolic Diseases
Proteome - metabolism
Proteomics - methods
Review
title Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomics%20for%20prediction%20of%20disease%20progression%20and%20response%20to%20therapy%20in%20diabetic%20kidney%20disease&rft.jtitle=Diabetologia&rft.au=Pena,%20Michelle%20J.&rft.date=2016-09-01&rft.volume=59&rft.issue=9&rft.spage=1819&rft.epage=1831&rft.pages=1819-1831&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-016-4001-9&rft_dat=%3Cproquest_pubme%3E4145695181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811035263&rft_id=info:pmid/27344310&rfr_iscdi=true