A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production

Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 2012-05, Vol.498 (2), p.242-253
Hauptverfasser: Sautter, Robert, Ramos, Damaris, Schneper, Lisa, Ciofu, Oana, Wassermann, Tina, Koh, Chong-Lek, Heydorn, Arne, Hentzer, Morton, Høiby, Niels, Kharazmi, Arsalan, Molin, Søren, DeVries, Caroline A., Ohman, Dennis E., Mathee, Kalai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 2
container_start_page 242
container_title Gene
container_volume 498
creator Sautter, Robert
Ramos, Damaris
Schneper, Lisa
Ciofu, Oana
Wassermann, Tina
Koh, Chong-Lek
Heydorn, Arne
Hentzer, Morton
Høiby, Niels
Kharazmi, Arsalan
Molin, Søren
DeVries, Caroline A.
Ohman, Dennis E.
Mathee, Kalai
description Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lung. Mucoid conversion is indicative of overproduction of a capsule-like polysaccharide called alginate. The alginate-overproducing (Alg+) mucoid phenotype seen in the CF isolates is extremely unstable. Low oxygen tension growth of mucoid variants readily selects for nonmucoid variants. The switching off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg+ due to the replacement of the mucA with mucA22 (PDO300) was used. The mucA22 allele is common in mucoid CF isolates. Thirty-four spontaneous nonmucoid variants, or sap (suppressor of alginate production) mutants, of PDO300 were isolated under low oxygen tension. About 40% of the sap mutants were rescued by a plasmid carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic complementation and sequencing of one Group B sap mutant, sap22, revealed that the nonmucoid phenotype was due to the presence of a mutation in PA3257. PA3257 encodes a putative periplasmic protease. Mutation of PA3257 resulted in decreased algT/U expression. Thus, inhibition of algT/U is a primary mechanism for alginate synthesis suppression. ► We screened for genes involved in alginate production. ► Multiple pathways are involved in mucoid to nonmucoid reversion. ► Reversion is in part attributed to loss of AlgT/U and AlgO function. ► AlgT/U and AlgO positively regulate alginate production.
doi_str_mv 10.1016/j.gene.2011.11.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4968699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111911006615</els_id><sourcerecordid>1672059880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-4ec3e0762dbac3f27fb22c9da4cd374357e2beb512587b99d3a7900daeec6e653</originalsourceid><addsrcrecordid>eNp9kd9qFDEUxoModlt9AS8kd_ZmtknmTxIQYSlahYJetNchk5zZZp1JxiSztC_gc5tla9GbhgOBnN_3cXI-hN5RsqaEdhe79RY8rBmhdF2KkPYFWlHBZUVILV6iFam5qCil8gSdprQj5bQte41OGCNCtLxdod8bbMI0j3CPp2XMboQ9jFjnrM1PHDz-kWCxYQpeJ6whLlvnQ9JYj9ubi1sM93OElFwBtbd4c3zVJru9yw-49Ipnws7jfAd4DCnhMBzEzusMeI7BLgUO_g16NegxwdvH-wzdfvl8c_m1uv5-9e1yc12ZRvBcNWBqILxjttemHhgfesaMtLoxtuZN3XJgPfQtZa3gvZS21lwSYjWA6aBr6zP06eg7L_0E1oDPUY9qjm7S8UEF7dT_He_u1DbsVSM70UlZDD48GsTwa4GU1eSSgXHUHsKSlGyEpIQwXsjzZ0nacUZaKQQpKDuiJpYVRRieBqJEHaJWO3WIWh2iVqVKjkX0_t-vPEn-ZluAj0cAykL3DqJKxoE3YF0Ek5UN7jn_P8Frvmk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672059880</pqid></control><display><type>article</type><title>A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sautter, Robert ; Ramos, Damaris ; Schneper, Lisa ; Ciofu, Oana ; Wassermann, Tina ; Koh, Chong-Lek ; Heydorn, Arne ; Hentzer, Morton ; Høiby, Niels ; Kharazmi, Arsalan ; Molin, Søren ; DeVries, Caroline A. ; Ohman, Dennis E. ; Mathee, Kalai</creator><creatorcontrib>Sautter, Robert ; Ramos, Damaris ; Schneper, Lisa ; Ciofu, Oana ; Wassermann, Tina ; Koh, Chong-Lek ; Heydorn, Arne ; Hentzer, Morton ; Høiby, Niels ; Kharazmi, Arsalan ; Molin, Søren ; DeVries, Caroline A. ; Ohman, Dennis E. ; Mathee, Kalai</creatorcontrib><description>Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lung. Mucoid conversion is indicative of overproduction of a capsule-like polysaccharide called alginate. The alginate-overproducing (Alg+) mucoid phenotype seen in the CF isolates is extremely unstable. Low oxygen tension growth of mucoid variants readily selects for nonmucoid variants. The switching off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg+ due to the replacement of the mucA with mucA22 (PDO300) was used. The mucA22 allele is common in mucoid CF isolates. Thirty-four spontaneous nonmucoid variants, or sap (suppressor of alginate production) mutants, of PDO300 were isolated under low oxygen tension. About 40% of the sap mutants were rescued by a plasmid carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic complementation and sequencing of one Group B sap mutant, sap22, revealed that the nonmucoid phenotype was due to the presence of a mutation in PA3257. PA3257 encodes a putative periplasmic protease. Mutation of PA3257 resulted in decreased algT/U expression. Thus, inhibition of algT/U is a primary mechanism for alginate synthesis suppression. ► We screened for genes involved in alginate production. ► Multiple pathways are involved in mucoid to nonmucoid reversion. ► Reversion is in part attributed to loss of AlgT/U and AlgO function. ► AlgT/U and AlgO positively regulate alginate production.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/j.gene.2011.11.005</identifier><identifier>PMID: 22088575</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alginate ; Alginates ; Alginates - metabolism ; alleles ; Amino Acid Sequence ; bacteria ; Bacterial Outer Membrane Proteins ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial Proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; beta-Lactamases ; beta-Lactamases - genetics ; beta-Lactamases - metabolism ; Biosynthetic genes ; Cystic fibrosis ; DNA Transposable Elements ; drug effects ; Exopolysaccharide ; Gene Expression Regulation, Bacterial ; genetic complementation ; Genetic Complementation Test ; genetics ; Glucuronic Acid ; Glucuronic Acid - metabolism ; Hexuronic Acids ; Hexuronic Acids - metabolism ; loci ; metabolism ; Microbial Sensitivity Tests ; Molecular Sequence Data ; morbidity ; mortality ; mutants ; Mutation ; oxygen ; PalgT/algU ; pathogens ; patients ; Peptide Hydrolases ; Peptide Hydrolases - genetics ; Peptide Hydrolases - metabolism ; phenotype ; plasmids ; proteinases ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - drug effects ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; sequence analysis ; Sigma Factor ; Sigma Factor - genetics ; Sigma Factor - metabolism</subject><ispartof>Gene, 2012-05, Vol.498 (2), p.242-253</ispartof><rights>2011</rights><rights>Copyright © 2011. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-4ec3e0762dbac3f27fb22c9da4cd374357e2beb512587b99d3a7900daeec6e653</citedby><cites>FETCH-LOGICAL-c487t-4ec3e0762dbac3f27fb22c9da4cd374357e2beb512587b99d3a7900daeec6e653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378111911006615$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22088575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sautter, Robert</creatorcontrib><creatorcontrib>Ramos, Damaris</creatorcontrib><creatorcontrib>Schneper, Lisa</creatorcontrib><creatorcontrib>Ciofu, Oana</creatorcontrib><creatorcontrib>Wassermann, Tina</creatorcontrib><creatorcontrib>Koh, Chong-Lek</creatorcontrib><creatorcontrib>Heydorn, Arne</creatorcontrib><creatorcontrib>Hentzer, Morton</creatorcontrib><creatorcontrib>Høiby, Niels</creatorcontrib><creatorcontrib>Kharazmi, Arsalan</creatorcontrib><creatorcontrib>Molin, Søren</creatorcontrib><creatorcontrib>DeVries, Caroline A.</creatorcontrib><creatorcontrib>Ohman, Dennis E.</creatorcontrib><creatorcontrib>Mathee, Kalai</creatorcontrib><title>A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production</title><title>Gene</title><addtitle>Gene</addtitle><description>Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lung. Mucoid conversion is indicative of overproduction of a capsule-like polysaccharide called alginate. The alginate-overproducing (Alg+) mucoid phenotype seen in the CF isolates is extremely unstable. Low oxygen tension growth of mucoid variants readily selects for nonmucoid variants. The switching off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg+ due to the replacement of the mucA with mucA22 (PDO300) was used. The mucA22 allele is common in mucoid CF isolates. Thirty-four spontaneous nonmucoid variants, or sap (suppressor of alginate production) mutants, of PDO300 were isolated under low oxygen tension. About 40% of the sap mutants were rescued by a plasmid carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic complementation and sequencing of one Group B sap mutant, sap22, revealed that the nonmucoid phenotype was due to the presence of a mutation in PA3257. PA3257 encodes a putative periplasmic protease. Mutation of PA3257 resulted in decreased algT/U expression. Thus, inhibition of algT/U is a primary mechanism for alginate synthesis suppression. ► We screened for genes involved in alginate production. ► Multiple pathways are involved in mucoid to nonmucoid reversion. ► Reversion is in part attributed to loss of AlgT/U and AlgO function. ► AlgT/U and AlgO positively regulate alginate production.</description><subject>Alginate</subject><subject>Alginates</subject><subject>Alginates - metabolism</subject><subject>alleles</subject><subject>Amino Acid Sequence</subject><subject>bacteria</subject><subject>Bacterial Outer Membrane Proteins</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial Proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>beta-Lactamases</subject><subject>beta-Lactamases - genetics</subject><subject>beta-Lactamases - metabolism</subject><subject>Biosynthetic genes</subject><subject>Cystic fibrosis</subject><subject>DNA Transposable Elements</subject><subject>drug effects</subject><subject>Exopolysaccharide</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>genetic complementation</subject><subject>Genetic Complementation Test</subject><subject>genetics</subject><subject>Glucuronic Acid</subject><subject>Glucuronic Acid - metabolism</subject><subject>Hexuronic Acids</subject><subject>Hexuronic Acids - metabolism</subject><subject>loci</subject><subject>metabolism</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Sequence Data</subject><subject>morbidity</subject><subject>mortality</subject><subject>mutants</subject><subject>Mutation</subject><subject>oxygen</subject><subject>PalgT/algU</subject><subject>pathogens</subject><subject>patients</subject><subject>Peptide Hydrolases</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptide Hydrolases - metabolism</subject><subject>phenotype</subject><subject>plasmids</subject><subject>proteinases</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - drug effects</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>sequence analysis</subject><subject>Sigma Factor</subject><subject>Sigma Factor - genetics</subject><subject>Sigma Factor - metabolism</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd9qFDEUxoModlt9AS8kd_ZmtknmTxIQYSlahYJetNchk5zZZp1JxiSztC_gc5tla9GbhgOBnN_3cXI-hN5RsqaEdhe79RY8rBmhdF2KkPYFWlHBZUVILV6iFam5qCil8gSdprQj5bQte41OGCNCtLxdod8bbMI0j3CPp2XMboQ9jFjnrM1PHDz-kWCxYQpeJ6whLlvnQ9JYj9ubi1sM93OElFwBtbd4c3zVJru9yw-49Ipnws7jfAd4DCnhMBzEzusMeI7BLgUO_g16NegxwdvH-wzdfvl8c_m1uv5-9e1yc12ZRvBcNWBqILxjttemHhgfesaMtLoxtuZN3XJgPfQtZa3gvZS21lwSYjWA6aBr6zP06eg7L_0E1oDPUY9qjm7S8UEF7dT_He_u1DbsVSM70UlZDD48GsTwa4GU1eSSgXHUHsKSlGyEpIQwXsjzZ0nacUZaKQQpKDuiJpYVRRieBqJEHaJWO3WIWh2iVqVKjkX0_t-vPEn-ZluAj0cAykL3DqJKxoE3YF0Ek5UN7jn_P8Frvmk</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Sautter, Robert</creator><creator>Ramos, Damaris</creator><creator>Schneper, Lisa</creator><creator>Ciofu, Oana</creator><creator>Wassermann, Tina</creator><creator>Koh, Chong-Lek</creator><creator>Heydorn, Arne</creator><creator>Hentzer, Morton</creator><creator>Høiby, Niels</creator><creator>Kharazmi, Arsalan</creator><creator>Molin, Søren</creator><creator>DeVries, Caroline A.</creator><creator>Ohman, Dennis E.</creator><creator>Mathee, Kalai</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120501</creationdate><title>A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production</title><author>Sautter, Robert ; Ramos, Damaris ; Schneper, Lisa ; Ciofu, Oana ; Wassermann, Tina ; Koh, Chong-Lek ; Heydorn, Arne ; Hentzer, Morton ; Høiby, Niels ; Kharazmi, Arsalan ; Molin, Søren ; DeVries, Caroline A. ; Ohman, Dennis E. ; Mathee, Kalai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-4ec3e0762dbac3f27fb22c9da4cd374357e2beb512587b99d3a7900daeec6e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alginate</topic><topic>Alginates</topic><topic>Alginates - metabolism</topic><topic>alleles</topic><topic>Amino Acid Sequence</topic><topic>bacteria</topic><topic>Bacterial Outer Membrane Proteins</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial Proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>beta-Lactamases</topic><topic>beta-Lactamases - genetics</topic><topic>beta-Lactamases - metabolism</topic><topic>Biosynthetic genes</topic><topic>Cystic fibrosis</topic><topic>DNA Transposable Elements</topic><topic>drug effects</topic><topic>Exopolysaccharide</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>genetic complementation</topic><topic>Genetic Complementation Test</topic><topic>genetics</topic><topic>Glucuronic Acid</topic><topic>Glucuronic Acid - metabolism</topic><topic>Hexuronic Acids</topic><topic>Hexuronic Acids - metabolism</topic><topic>loci</topic><topic>metabolism</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Sequence Data</topic><topic>morbidity</topic><topic>mortality</topic><topic>mutants</topic><topic>Mutation</topic><topic>oxygen</topic><topic>PalgT/algU</topic><topic>pathogens</topic><topic>patients</topic><topic>Peptide Hydrolases</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptide Hydrolases - metabolism</topic><topic>phenotype</topic><topic>plasmids</topic><topic>proteinases</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - drug effects</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>sequence analysis</topic><topic>Sigma Factor</topic><topic>Sigma Factor - genetics</topic><topic>Sigma Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sautter, Robert</creatorcontrib><creatorcontrib>Ramos, Damaris</creatorcontrib><creatorcontrib>Schneper, Lisa</creatorcontrib><creatorcontrib>Ciofu, Oana</creatorcontrib><creatorcontrib>Wassermann, Tina</creatorcontrib><creatorcontrib>Koh, Chong-Lek</creatorcontrib><creatorcontrib>Heydorn, Arne</creatorcontrib><creatorcontrib>Hentzer, Morton</creatorcontrib><creatorcontrib>Høiby, Niels</creatorcontrib><creatorcontrib>Kharazmi, Arsalan</creatorcontrib><creatorcontrib>Molin, Søren</creatorcontrib><creatorcontrib>DeVries, Caroline A.</creatorcontrib><creatorcontrib>Ohman, Dennis E.</creatorcontrib><creatorcontrib>Mathee, Kalai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sautter, Robert</au><au>Ramos, Damaris</au><au>Schneper, Lisa</au><au>Ciofu, Oana</au><au>Wassermann, Tina</au><au>Koh, Chong-Lek</au><au>Heydorn, Arne</au><au>Hentzer, Morton</au><au>Høiby, Niels</au><au>Kharazmi, Arsalan</au><au>Molin, Søren</au><au>DeVries, Caroline A.</au><au>Ohman, Dennis E.</au><au>Mathee, Kalai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>498</volume><issue>2</issue><spage>242</spage><epage>253</epage><pages>242-253</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lung. Mucoid conversion is indicative of overproduction of a capsule-like polysaccharide called alginate. The alginate-overproducing (Alg+) mucoid phenotype seen in the CF isolates is extremely unstable. Low oxygen tension growth of mucoid variants readily selects for nonmucoid variants. The switching off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg+ due to the replacement of the mucA with mucA22 (PDO300) was used. The mucA22 allele is common in mucoid CF isolates. Thirty-four spontaneous nonmucoid variants, or sap (suppressor of alginate production) mutants, of PDO300 were isolated under low oxygen tension. About 40% of the sap mutants were rescued by a plasmid carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic complementation and sequencing of one Group B sap mutant, sap22, revealed that the nonmucoid phenotype was due to the presence of a mutation in PA3257. PA3257 encodes a putative periplasmic protease. Mutation of PA3257 resulted in decreased algT/U expression. Thus, inhibition of algT/U is a primary mechanism for alginate synthesis suppression. ► We screened for genes involved in alginate production. ► Multiple pathways are involved in mucoid to nonmucoid reversion. ► Reversion is in part attributed to loss of AlgT/U and AlgO function. ► AlgT/U and AlgO positively regulate alginate production.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22088575</pmid><doi>10.1016/j.gene.2011.11.005</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-1119
ispartof Gene, 2012-05, Vol.498 (2), p.242-253
issn 0378-1119
1879-0038
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4968699
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alginate
Alginates
Alginates - metabolism
alleles
Amino Acid Sequence
bacteria
Bacterial Outer Membrane Proteins
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Bacterial Proteins
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
beta-Lactamases
beta-Lactamases - genetics
beta-Lactamases - metabolism
Biosynthetic genes
Cystic fibrosis
DNA Transposable Elements
drug effects
Exopolysaccharide
Gene Expression Regulation, Bacterial
genetic complementation
Genetic Complementation Test
genetics
Glucuronic Acid
Glucuronic Acid - metabolism
Hexuronic Acids
Hexuronic Acids - metabolism
loci
metabolism
Microbial Sensitivity Tests
Molecular Sequence Data
morbidity
mortality
mutants
Mutation
oxygen
PalgT/algU
pathogens
patients
Peptide Hydrolases
Peptide Hydrolases - genetics
Peptide Hydrolases - metabolism
phenotype
plasmids
proteinases
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
sequence analysis
Sigma Factor
Sigma Factor - genetics
Sigma Factor - metabolism
title A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20complex%20multilevel%20attack%20on%20Pseudomonas%20aeruginosa%20algT/U%20expression%20and%20AlgT/U%20activity%20results%20in%20the%20loss%20of%20alginate%20production&rft.jtitle=Gene&rft.au=Sautter,%20Robert&rft.date=2012-05-01&rft.volume=498&rft.issue=2&rft.spage=242&rft.epage=253&rft.pages=242-253&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/j.gene.2011.11.005&rft_dat=%3Cproquest_pubme%3E1672059880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672059880&rft_id=info:pmid/22088575&rft_els_id=S0378111911006615&rfr_iscdi=true