The PBMC transcriptome profile after intake of oxidized versus high-quality fish oil: an explorative study in healthy subjects
Marine long-chain polyunsaturated fatty acids are susceptible to oxidation, generating a range of different oxidation products with suggested negative health effects. The aim of the present study was to utilize sensitive high-throughput transcriptome analyses to investigate potential unfavorable eff...
Gespeichert in:
Veröffentlicht in: | Genes & nutrition 2016, Vol.11 (1), p.16-16, Article 16 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marine long-chain polyunsaturated fatty acids are susceptible to oxidation, generating a range of different oxidation products with suggested negative health effects. The aim of the present study was to utilize sensitive high-throughput transcriptome analyses to investigate potential unfavorable effects of oxidized fish oil (PV: 18 meq/kg; AV: 9) compared to high-quality fish oil (PV: 4 meq/kg; AV: 3).
In a double-blinded randomized controlled study for seven weeks, 35 healthy subjects were assigned to 8 g of either oxidized fish oil or high quality fish oil. The daily dose of EPA+DHA was 1.6 g. Peripheral blood mononuclear cells were isolated at baseline and after 7 weeks and transcriptome analyses were performed with the illuminaHT-12 v4 Expression BeadChip.
No gene transcripts, biological processes, pathway or network were significantly changed in the oxidized fish oil group compared to the fish oil group. Furthermore, gene sets related to oxidative stress and cardiovascular disease were not differently regulated between the groups. Within group analyses revealed a more prominent effect after intake of high quality fish oil as 11 gene transcripts were significantly (FDR |
---|---|
ISSN: | 1555-8932 1865-3499 |
DOI: | 10.1186/s12263-016-0530-6 |