Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability
Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We d...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-07, Vol.63 (2), p.337-346 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 2 |
container_start_page | 337 |
container_title | Molecular cell |
container_volume | 63 |
creator | Goldenzweig, Adi Goldsmith, Moshe Hill, Shannon E. Gertman, Or Laurino, Paola Ashani, Yacov Dym, Orly Unger, Tamar Albeck, Shira Prilusky, Jaime Lieberman, Raquel L. Aharoni, Amir Silman, Israel Sussman, Joel L. Tawfik, Dan S. Fleishman, Sarel J. |
description | Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.
[Display omitted]
•A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver
Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type. |
doi_str_mv | 10.1016/j.molcel.2016.06.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4961223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727651630243X</els_id><sourcerecordid>1806641016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</originalsourceid><addsrcrecordid>eNqNUdFqFDEUDaLYWv0DkXn0ZdbcTJKZeRHaWm2h0IL6HJLMzTbLzGRNMsX-vVl2rfZFhAvJ5Z57knMOIW-BroCC_LBZTWG0OK5Y6Va0FLBn5Bho39YcJH9-uLNWiiPyKqUNpcBF178kR6zlTHCgx8SdLjlMOuNQfc1xsXmJWFd6Li3-WHC2WJ_pVKafMPn1XAVX3caQ0c-pciFWl359V51pmzF6PVYXP7cRU_Jh3nNkbfzo88Nr8sLpMeGbw3lCvn---HZ-WV_ffLk6P72urYQm10J22AJgw13XGgTT85ZL0I11nWHGdZKZwQmhUQ_AWm0aLhkzwgG1Tpi-OSEf97zbxUw4WJxz1KPaRj_p-KCC9urpZPZ3ah3uFe8lMNYUgvcHghiK_pTV5FNxedQzhiUp6IpxDZUC_gNKpeS7rAqU76E2hpQiuscfAVU7hNqofZpql6aipYCVtXd_q3lc-h3fH7lYPL33GFWyfhfa4CParIbg__3CLzwVtBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806641016</pqid></control><display><type>article</type><title>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Goldenzweig, Adi ; Goldsmith, Moshe ; Hill, Shannon E. ; Gertman, Or ; Laurino, Paola ; Ashani, Yacov ; Dym, Orly ; Unger, Tamar ; Albeck, Shira ; Prilusky, Jaime ; Lieberman, Raquel L. ; Aharoni, Amir ; Silman, Israel ; Sussman, Joel L. ; Tawfik, Dan S. ; Fleishman, Sarel J.</creator><creatorcontrib>Goldenzweig, Adi ; Goldsmith, Moshe ; Hill, Shannon E. ; Gertman, Or ; Laurino, Paola ; Ashani, Yacov ; Dym, Orly ; Unger, Tamar ; Albeck, Shira ; Prilusky, Jaime ; Lieberman, Raquel L. ; Aharoni, Amir ; Silman, Israel ; Sussman, Joel L. ; Tawfik, Dan S. ; Fleishman, Sarel J.</creatorcontrib><description>Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.
[Display omitted]
•A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver
Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.06.012</identifier><identifier>PMID: 27425410</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetylcholinesterase ; Acetylcholinesterase - chemistry ; Acetylcholinesterase - genetics ; Acetylcholinesterase - metabolism ; active sites ; Algorithms ; Automation, Laboratory ; bacterial proteins ; Computational Biology - methods ; Computer Simulation ; Computer-Aided Design ; crystallography ; DNA (Cytosine-5-)-Methyltransferases - genetics ; DNA (Cytosine-5-)-Methyltransferases - metabolism ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; GPI-Linked Proteins - chemistry ; GPI-Linked Proteins - genetics ; GPI-Linked Proteins - metabolism ; humans ; Mutation ; Phosphoric Triester Hydrolases - genetics ; Phosphoric Triester Hydrolases - metabolism ; Protein Conformation ; Protein Denaturation ; Protein Engineering - methods ; Protein Stability ; Sirtuins - genetics ; Sirtuins - metabolism ; Structure-Activity Relationship ; synaptic transmission ; Technology ; Temperature ; thermal stability</subject><ispartof>Molecular cell, 2016-07, Vol.63 (2), p.337-346</ispartof><rights>2016 The Author(s)</rights><rights>Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</citedby><cites>FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S109727651630243X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27425410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldenzweig, Adi</creatorcontrib><creatorcontrib>Goldsmith, Moshe</creatorcontrib><creatorcontrib>Hill, Shannon E.</creatorcontrib><creatorcontrib>Gertman, Or</creatorcontrib><creatorcontrib>Laurino, Paola</creatorcontrib><creatorcontrib>Ashani, Yacov</creatorcontrib><creatorcontrib>Dym, Orly</creatorcontrib><creatorcontrib>Unger, Tamar</creatorcontrib><creatorcontrib>Albeck, Shira</creatorcontrib><creatorcontrib>Prilusky, Jaime</creatorcontrib><creatorcontrib>Lieberman, Raquel L.</creatorcontrib><creatorcontrib>Aharoni, Amir</creatorcontrib><creatorcontrib>Silman, Israel</creatorcontrib><creatorcontrib>Sussman, Joel L.</creatorcontrib><creatorcontrib>Tawfik, Dan S.</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><title>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.
[Display omitted]
•A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver
Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type.</description><subject>acetylcholinesterase</subject><subject>Acetylcholinesterase - chemistry</subject><subject>Acetylcholinesterase - genetics</subject><subject>Acetylcholinesterase - metabolism</subject><subject>active sites</subject><subject>Algorithms</subject><subject>Automation, Laboratory</subject><subject>bacterial proteins</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>crystallography</subject><subject>DNA (Cytosine-5-)-Methyltransferases - genetics</subject><subject>DNA (Cytosine-5-)-Methyltransferases - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>GPI-Linked Proteins - chemistry</subject><subject>GPI-Linked Proteins - genetics</subject><subject>GPI-Linked Proteins - metabolism</subject><subject>humans</subject><subject>Mutation</subject><subject>Phosphoric Triester Hydrolases - genetics</subject><subject>Phosphoric Triester Hydrolases - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein Engineering - methods</subject><subject>Protein Stability</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>synaptic transmission</subject><subject>Technology</subject><subject>Temperature</subject><subject>thermal stability</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUdFqFDEUDaLYWv0DkXn0ZdbcTJKZeRHaWm2h0IL6HJLMzTbLzGRNMsX-vVl2rfZFhAvJ5Z57knMOIW-BroCC_LBZTWG0OK5Y6Va0FLBn5Bho39YcJH9-uLNWiiPyKqUNpcBF178kR6zlTHCgx8SdLjlMOuNQfc1xsXmJWFd6Li3-WHC2WJ_pVKafMPn1XAVX3caQ0c-pciFWl359V51pmzF6PVYXP7cRU_Jh3nNkbfzo88Nr8sLpMeGbw3lCvn---HZ-WV_ffLk6P72urYQm10J22AJgw13XGgTT85ZL0I11nWHGdZKZwQmhUQ_AWm0aLhkzwgG1Tpi-OSEf97zbxUw4WJxz1KPaRj_p-KCC9urpZPZ3ah3uFe8lMNYUgvcHghiK_pTV5FNxedQzhiUp6IpxDZUC_gNKpeS7rAqU76E2hpQiuscfAVU7hNqofZpql6aipYCVtXd_q3lc-h3fH7lYPL33GFWyfhfa4CParIbg__3CLzwVtBM</recordid><startdate>20160721</startdate><enddate>20160721</enddate><creator>Goldenzweig, Adi</creator><creator>Goldsmith, Moshe</creator><creator>Hill, Shannon E.</creator><creator>Gertman, Or</creator><creator>Laurino, Paola</creator><creator>Ashani, Yacov</creator><creator>Dym, Orly</creator><creator>Unger, Tamar</creator><creator>Albeck, Shira</creator><creator>Prilusky, Jaime</creator><creator>Lieberman, Raquel L.</creator><creator>Aharoni, Amir</creator><creator>Silman, Israel</creator><creator>Sussman, Joel L.</creator><creator>Tawfik, Dan S.</creator><creator>Fleishman, Sarel J.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160721</creationdate><title>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</title><author>Goldenzweig, Adi ; Goldsmith, Moshe ; Hill, Shannon E. ; Gertman, Or ; Laurino, Paola ; Ashani, Yacov ; Dym, Orly ; Unger, Tamar ; Albeck, Shira ; Prilusky, Jaime ; Lieberman, Raquel L. ; Aharoni, Amir ; Silman, Israel ; Sussman, Joel L. ; Tawfik, Dan S. ; Fleishman, Sarel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acetylcholinesterase</topic><topic>Acetylcholinesterase - chemistry</topic><topic>Acetylcholinesterase - genetics</topic><topic>Acetylcholinesterase - metabolism</topic><topic>active sites</topic><topic>Algorithms</topic><topic>Automation, Laboratory</topic><topic>bacterial proteins</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>crystallography</topic><topic>DNA (Cytosine-5-)-Methyltransferases - genetics</topic><topic>DNA (Cytosine-5-)-Methyltransferases - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>GPI-Linked Proteins - chemistry</topic><topic>GPI-Linked Proteins - genetics</topic><topic>GPI-Linked Proteins - metabolism</topic><topic>humans</topic><topic>Mutation</topic><topic>Phosphoric Triester Hydrolases - genetics</topic><topic>Phosphoric Triester Hydrolases - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein Engineering - methods</topic><topic>Protein Stability</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>synaptic transmission</topic><topic>Technology</topic><topic>Temperature</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldenzweig, Adi</creatorcontrib><creatorcontrib>Goldsmith, Moshe</creatorcontrib><creatorcontrib>Hill, Shannon E.</creatorcontrib><creatorcontrib>Gertman, Or</creatorcontrib><creatorcontrib>Laurino, Paola</creatorcontrib><creatorcontrib>Ashani, Yacov</creatorcontrib><creatorcontrib>Dym, Orly</creatorcontrib><creatorcontrib>Unger, Tamar</creatorcontrib><creatorcontrib>Albeck, Shira</creatorcontrib><creatorcontrib>Prilusky, Jaime</creatorcontrib><creatorcontrib>Lieberman, Raquel L.</creatorcontrib><creatorcontrib>Aharoni, Amir</creatorcontrib><creatorcontrib>Silman, Israel</creatorcontrib><creatorcontrib>Sussman, Joel L.</creatorcontrib><creatorcontrib>Tawfik, Dan S.</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldenzweig, Adi</au><au>Goldsmith, Moshe</au><au>Hill, Shannon E.</au><au>Gertman, Or</au><au>Laurino, Paola</au><au>Ashani, Yacov</au><au>Dym, Orly</au><au>Unger, Tamar</au><au>Albeck, Shira</au><au>Prilusky, Jaime</au><au>Lieberman, Raquel L.</au><au>Aharoni, Amir</au><au>Silman, Israel</au><au>Sussman, Joel L.</au><au>Tawfik, Dan S.</au><au>Fleishman, Sarel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-07-21</date><risdate>2016</risdate><volume>63</volume><issue>2</issue><spage>337</spage><epage>346</epage><pages>337-346</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.
[Display omitted]
•A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver
Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27425410</pmid><doi>10.1016/j.molcel.2016.06.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-07, Vol.63 (2), p.337-346 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4961223 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | acetylcholinesterase Acetylcholinesterase - chemistry Acetylcholinesterase - genetics Acetylcholinesterase - metabolism active sites Algorithms Automation, Laboratory bacterial proteins Computational Biology - methods Computer Simulation Computer-Aided Design crystallography DNA (Cytosine-5-)-Methyltransferases - genetics DNA (Cytosine-5-)-Methyltransferases - metabolism Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Gene Expression Regulation, Bacterial Gene Expression Regulation, Enzymologic GPI-Linked Proteins - chemistry GPI-Linked Proteins - genetics GPI-Linked Proteins - metabolism humans Mutation Phosphoric Triester Hydrolases - genetics Phosphoric Triester Hydrolases - metabolism Protein Conformation Protein Denaturation Protein Engineering - methods Protein Stability Sirtuins - genetics Sirtuins - metabolism Structure-Activity Relationship synaptic transmission Technology Temperature thermal stability |
title | Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Structure-%20and%20Sequence-Based%20Design%20of%20Proteins%20for%20High%20Bacterial%20Expression%20and%20Stability&rft.jtitle=Molecular%20cell&rft.au=Goldenzweig,%20Adi&rft.date=2016-07-21&rft.volume=63&rft.issue=2&rft.spage=337&rft.epage=346&rft.pages=337-346&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.06.012&rft_dat=%3Cproquest_pubme%3E1806641016%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806641016&rft_id=info:pmid/27425410&rft_els_id=S109727651630243X&rfr_iscdi=true |