Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability

Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2016-07, Vol.63 (2), p.337-346
Hauptverfasser: Goldenzweig, Adi, Goldsmith, Moshe, Hill, Shannon E., Gertman, Or, Laurino, Paola, Ashani, Yacov, Dym, Orly, Unger, Tamar, Albeck, Shira, Prilusky, Jaime, Lieberman, Raquel L., Aharoni, Amir, Silman, Israel, Sussman, Joel L., Tawfik, Dan S., Fleishman, Sarel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 2
container_start_page 337
container_title Molecular cell
container_volume 63
creator Goldenzweig, Adi
Goldsmith, Moshe
Hill, Shannon E.
Gertman, Or
Laurino, Paola
Ashani, Yacov
Dym, Orly
Unger, Tamar
Albeck, Shira
Prilusky, Jaime
Lieberman, Raquel L.
Aharoni, Amir
Silman, Israel
Sussman, Joel L.
Tawfik, Dan S.
Fleishman, Sarel J.
description Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il. [Display omitted] •A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type.
doi_str_mv 10.1016/j.molcel.2016.06.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4961223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727651630243X</els_id><sourcerecordid>1806641016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</originalsourceid><addsrcrecordid>eNqNUdFqFDEUDaLYWv0DkXn0ZdbcTJKZeRHaWm2h0IL6HJLMzTbLzGRNMsX-vVl2rfZFhAvJ5Z57knMOIW-BroCC_LBZTWG0OK5Y6Va0FLBn5Bho39YcJH9-uLNWiiPyKqUNpcBF178kR6zlTHCgx8SdLjlMOuNQfc1xsXmJWFd6Li3-WHC2WJ_pVKafMPn1XAVX3caQ0c-pciFWl359V51pmzF6PVYXP7cRU_Jh3nNkbfzo88Nr8sLpMeGbw3lCvn---HZ-WV_ffLk6P72urYQm10J22AJgw13XGgTT85ZL0I11nWHGdZKZwQmhUQ_AWm0aLhkzwgG1Tpi-OSEf97zbxUw4WJxz1KPaRj_p-KCC9urpZPZ3ah3uFe8lMNYUgvcHghiK_pTV5FNxedQzhiUp6IpxDZUC_gNKpeS7rAqU76E2hpQiuscfAVU7hNqofZpql6aipYCVtXd_q3lc-h3fH7lYPL33GFWyfhfa4CParIbg__3CLzwVtBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806641016</pqid></control><display><type>article</type><title>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Goldenzweig, Adi ; Goldsmith, Moshe ; Hill, Shannon E. ; Gertman, Or ; Laurino, Paola ; Ashani, Yacov ; Dym, Orly ; Unger, Tamar ; Albeck, Shira ; Prilusky, Jaime ; Lieberman, Raquel L. ; Aharoni, Amir ; Silman, Israel ; Sussman, Joel L. ; Tawfik, Dan S. ; Fleishman, Sarel J.</creator><creatorcontrib>Goldenzweig, Adi ; Goldsmith, Moshe ; Hill, Shannon E. ; Gertman, Or ; Laurino, Paola ; Ashani, Yacov ; Dym, Orly ; Unger, Tamar ; Albeck, Shira ; Prilusky, Jaime ; Lieberman, Raquel L. ; Aharoni, Amir ; Silman, Israel ; Sussman, Joel L. ; Tawfik, Dan S. ; Fleishman, Sarel J.</creatorcontrib><description>Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il. [Display omitted] •A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.06.012</identifier><identifier>PMID: 27425410</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetylcholinesterase ; Acetylcholinesterase - chemistry ; Acetylcholinesterase - genetics ; Acetylcholinesterase - metabolism ; active sites ; Algorithms ; Automation, Laboratory ; bacterial proteins ; Computational Biology - methods ; Computer Simulation ; Computer-Aided Design ; crystallography ; DNA (Cytosine-5-)-Methyltransferases - genetics ; DNA (Cytosine-5-)-Methyltransferases - metabolism ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; GPI-Linked Proteins - chemistry ; GPI-Linked Proteins - genetics ; GPI-Linked Proteins - metabolism ; humans ; Mutation ; Phosphoric Triester Hydrolases - genetics ; Phosphoric Triester Hydrolases - metabolism ; Protein Conformation ; Protein Denaturation ; Protein Engineering - methods ; Protein Stability ; Sirtuins - genetics ; Sirtuins - metabolism ; Structure-Activity Relationship ; synaptic transmission ; Technology ; Temperature ; thermal stability</subject><ispartof>Molecular cell, 2016-07, Vol.63 (2), p.337-346</ispartof><rights>2016 The Author(s)</rights><rights>Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</citedby><cites>FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S109727651630243X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27425410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldenzweig, Adi</creatorcontrib><creatorcontrib>Goldsmith, Moshe</creatorcontrib><creatorcontrib>Hill, Shannon E.</creatorcontrib><creatorcontrib>Gertman, Or</creatorcontrib><creatorcontrib>Laurino, Paola</creatorcontrib><creatorcontrib>Ashani, Yacov</creatorcontrib><creatorcontrib>Dym, Orly</creatorcontrib><creatorcontrib>Unger, Tamar</creatorcontrib><creatorcontrib>Albeck, Shira</creatorcontrib><creatorcontrib>Prilusky, Jaime</creatorcontrib><creatorcontrib>Lieberman, Raquel L.</creatorcontrib><creatorcontrib>Aharoni, Amir</creatorcontrib><creatorcontrib>Silman, Israel</creatorcontrib><creatorcontrib>Sussman, Joel L.</creatorcontrib><creatorcontrib>Tawfik, Dan S.</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><title>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il. [Display omitted] •A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type.</description><subject>acetylcholinesterase</subject><subject>Acetylcholinesterase - chemistry</subject><subject>Acetylcholinesterase - genetics</subject><subject>Acetylcholinesterase - metabolism</subject><subject>active sites</subject><subject>Algorithms</subject><subject>Automation, Laboratory</subject><subject>bacterial proteins</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>crystallography</subject><subject>DNA (Cytosine-5-)-Methyltransferases - genetics</subject><subject>DNA (Cytosine-5-)-Methyltransferases - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>GPI-Linked Proteins - chemistry</subject><subject>GPI-Linked Proteins - genetics</subject><subject>GPI-Linked Proteins - metabolism</subject><subject>humans</subject><subject>Mutation</subject><subject>Phosphoric Triester Hydrolases - genetics</subject><subject>Phosphoric Triester Hydrolases - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein Engineering - methods</subject><subject>Protein Stability</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>synaptic transmission</subject><subject>Technology</subject><subject>Temperature</subject><subject>thermal stability</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUdFqFDEUDaLYWv0DkXn0ZdbcTJKZeRHaWm2h0IL6HJLMzTbLzGRNMsX-vVl2rfZFhAvJ5Z57knMOIW-BroCC_LBZTWG0OK5Y6Va0FLBn5Bho39YcJH9-uLNWiiPyKqUNpcBF178kR6zlTHCgx8SdLjlMOuNQfc1xsXmJWFd6Li3-WHC2WJ_pVKafMPn1XAVX3caQ0c-pciFWl359V51pmzF6PVYXP7cRU_Jh3nNkbfzo88Nr8sLpMeGbw3lCvn---HZ-WV_ffLk6P72urYQm10J22AJgw13XGgTT85ZL0I11nWHGdZKZwQmhUQ_AWm0aLhkzwgG1Tpi-OSEf97zbxUw4WJxz1KPaRj_p-KCC9urpZPZ3ah3uFe8lMNYUgvcHghiK_pTV5FNxedQzhiUp6IpxDZUC_gNKpeS7rAqU76E2hpQiuscfAVU7hNqofZpql6aipYCVtXd_q3lc-h3fH7lYPL33GFWyfhfa4CParIbg__3CLzwVtBM</recordid><startdate>20160721</startdate><enddate>20160721</enddate><creator>Goldenzweig, Adi</creator><creator>Goldsmith, Moshe</creator><creator>Hill, Shannon E.</creator><creator>Gertman, Or</creator><creator>Laurino, Paola</creator><creator>Ashani, Yacov</creator><creator>Dym, Orly</creator><creator>Unger, Tamar</creator><creator>Albeck, Shira</creator><creator>Prilusky, Jaime</creator><creator>Lieberman, Raquel L.</creator><creator>Aharoni, Amir</creator><creator>Silman, Israel</creator><creator>Sussman, Joel L.</creator><creator>Tawfik, Dan S.</creator><creator>Fleishman, Sarel J.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160721</creationdate><title>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</title><author>Goldenzweig, Adi ; Goldsmith, Moshe ; Hill, Shannon E. ; Gertman, Or ; Laurino, Paola ; Ashani, Yacov ; Dym, Orly ; Unger, Tamar ; Albeck, Shira ; Prilusky, Jaime ; Lieberman, Raquel L. ; Aharoni, Amir ; Silman, Israel ; Sussman, Joel L. ; Tawfik, Dan S. ; Fleishman, Sarel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-568e711e34f87be1b947461a3cf8b2bf862bdf55aead127ab34622b5f10cf5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acetylcholinesterase</topic><topic>Acetylcholinesterase - chemistry</topic><topic>Acetylcholinesterase - genetics</topic><topic>Acetylcholinesterase - metabolism</topic><topic>active sites</topic><topic>Algorithms</topic><topic>Automation, Laboratory</topic><topic>bacterial proteins</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>crystallography</topic><topic>DNA (Cytosine-5-)-Methyltransferases - genetics</topic><topic>DNA (Cytosine-5-)-Methyltransferases - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>GPI-Linked Proteins - chemistry</topic><topic>GPI-Linked Proteins - genetics</topic><topic>GPI-Linked Proteins - metabolism</topic><topic>humans</topic><topic>Mutation</topic><topic>Phosphoric Triester Hydrolases - genetics</topic><topic>Phosphoric Triester Hydrolases - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein Engineering - methods</topic><topic>Protein Stability</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>synaptic transmission</topic><topic>Technology</topic><topic>Temperature</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldenzweig, Adi</creatorcontrib><creatorcontrib>Goldsmith, Moshe</creatorcontrib><creatorcontrib>Hill, Shannon E.</creatorcontrib><creatorcontrib>Gertman, Or</creatorcontrib><creatorcontrib>Laurino, Paola</creatorcontrib><creatorcontrib>Ashani, Yacov</creatorcontrib><creatorcontrib>Dym, Orly</creatorcontrib><creatorcontrib>Unger, Tamar</creatorcontrib><creatorcontrib>Albeck, Shira</creatorcontrib><creatorcontrib>Prilusky, Jaime</creatorcontrib><creatorcontrib>Lieberman, Raquel L.</creatorcontrib><creatorcontrib>Aharoni, Amir</creatorcontrib><creatorcontrib>Silman, Israel</creatorcontrib><creatorcontrib>Sussman, Joel L.</creatorcontrib><creatorcontrib>Tawfik, Dan S.</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldenzweig, Adi</au><au>Goldsmith, Moshe</au><au>Hill, Shannon E.</au><au>Gertman, Or</au><au>Laurino, Paola</au><au>Ashani, Yacov</au><au>Dym, Orly</au><au>Unger, Tamar</au><au>Albeck, Shira</au><au>Prilusky, Jaime</au><au>Lieberman, Raquel L.</au><au>Aharoni, Amir</au><au>Silman, Israel</au><au>Sussman, Joel L.</au><au>Tawfik, Dan S.</au><au>Fleishman, Sarel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-07-21</date><risdate>2016</risdate><volume>63</volume><issue>2</issue><spage>337</spage><epage>346</epage><pages>337-346</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il. [Display omitted] •A new computational method is used to stabilize five recalcitrant proteins•Designed variants show higher expression and stability with unmodified function•A designed human acetylcholinesterase variant expresses solubly in bacteria•The method is fully automated and implemented on a webserver Heterologous expression of proteins and their mutants often results in misfolding and aggregation. Goldenzweig et al. (2016) developed an automated algorithm for protein stabilization requiring minimal experimental testing; for instance, the five tested variants of human acetylcholinesterase showed ≥100-fold higher soluble bacterial expression and higher melting temperatures than wild-type.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27425410</pmid><doi>10.1016/j.molcel.2016.06.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2016-07, Vol.63 (2), p.337-346
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4961223
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects acetylcholinesterase
Acetylcholinesterase - chemistry
Acetylcholinesterase - genetics
Acetylcholinesterase - metabolism
active sites
Algorithms
Automation, Laboratory
bacterial proteins
Computational Biology - methods
Computer Simulation
Computer-Aided Design
crystallography
DNA (Cytosine-5-)-Methyltransferases - genetics
DNA (Cytosine-5-)-Methyltransferases - metabolism
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Gene Expression Regulation, Bacterial
Gene Expression Regulation, Enzymologic
GPI-Linked Proteins - chemistry
GPI-Linked Proteins - genetics
GPI-Linked Proteins - metabolism
humans
Mutation
Phosphoric Triester Hydrolases - genetics
Phosphoric Triester Hydrolases - metabolism
Protein Conformation
Protein Denaturation
Protein Engineering - methods
Protein Stability
Sirtuins - genetics
Sirtuins - metabolism
Structure-Activity Relationship
synaptic transmission
Technology
Temperature
thermal stability
title Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Structure-%20and%20Sequence-Based%20Design%20of%20Proteins%20for%20High%20Bacterial%20Expression%20and%20Stability&rft.jtitle=Molecular%20cell&rft.au=Goldenzweig,%20Adi&rft.date=2016-07-21&rft.volume=63&rft.issue=2&rft.spage=337&rft.epage=346&rft.pages=337-346&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.06.012&rft_dat=%3Cproquest_pubme%3E1806641016%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806641016&rft_id=info:pmid/27425410&rft_els_id=S109727651630243X&rfr_iscdi=true