Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase

Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to acti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell chemical biology 2016-07, Vol.23 (7), p.837-848
Hauptverfasser: Truong, Thu H., Ung, Peter Man-Un, Palde, Prakash B., Paulsen, Candice E., Schlessinger, Avner, Carroll, Kate S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 848
container_issue 7
container_start_page 837
container_title Cell chemical biology
container_volume 23
creator Truong, Thu H.
Ung, Peter Man-Un
Palde, Prakash B.
Paulsen, Candice E.
Schlessinger, Avner
Carroll, Kate S.
description Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology. [Display omitted] •The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors.
doi_str_mv 10.1016/j.chembiol.2016.05.017
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4958504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2451945616301970</els_id><sourcerecordid>27427230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</originalsourceid><addsrcrecordid>eNqFkFFPwjAUhRujEYL-BbM_wLxd13V7MSIBNGJMjD43XXsnJWMl7UD99w5Rok8-3XPTc85NP0IuKMQUaHa5jPUCV6V1dZx0eww8BiqOSD9JOR0WaZofHzTPeuQ8hCVA52SCMnFKeolIE5Ew6JPHB1ej3tTKRzcq2BBVzkdPaNx7NNKt3arWuiZyVTRZW4N-pepo5t1bu4imSrdfXo3rnbi3jQp4Rk4qVQc8_54D8jKdPI9vh_PH2d14NB9qzkQ7RJVrXrAc0sxoDowZRQ0gFAXLIEkVU6JTmTBFxQCwyjXLyzIRRtOsyGjFBuRq37velCs0GpvWq1quvV0p_yGdsvLvS2MX8tVtZVrwnEPaFWT7Au1dCB6rQ5aC3FGWS_lDWe4oS-Cyo9wFL35fPsR-mHaG670Bu_9vLXoZtMVGo7EedSuNs__d-AQYapJK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Truong, Thu H. ; Ung, Peter Man-Un ; Palde, Prakash B. ; Paulsen, Candice E. ; Schlessinger, Avner ; Carroll, Kate S.</creator><creatorcontrib>Truong, Thu H. ; Ung, Peter Man-Un ; Palde, Prakash B. ; Paulsen, Candice E. ; Schlessinger, Avner ; Carroll, Kate S.</creatorcontrib><description>Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology. [Display omitted] •The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors.</description><identifier>ISSN: 2451-9456</identifier><identifier>EISSN: 2451-9448</identifier><identifier>EISSN: 2451-9456</identifier><identifier>DOI: 10.1016/j.chembiol.2016.05.017</identifier><identifier>PMID: 27427230</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Afatinib ; Enzyme Activation ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - chemistry ; ErbB Receptors - metabolism ; Humans ; Molecular Dynamics Simulation ; Mutation ; Oxidation-Reduction ; Oxidative Stress - drug effects ; Protein Kinase Inhibitors - chemistry ; Protein Kinase Inhibitors - pharmacology ; Protein Kinases - metabolism ; Quinazolines - chemistry ; Quinazolines - pharmacology ; Structure-Activity Relationship ; Tumor Cells, Cultured</subject><ispartof>Cell chemical biology, 2016-07, Vol.23 (7), p.837-848</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</citedby><cites>FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27427230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, Thu H.</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Paulsen, Candice E.</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Carroll, Kate S.</creatorcontrib><title>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</title><title>Cell chemical biology</title><addtitle>Cell Chem Biol</addtitle><description>Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology. [Display omitted] •The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors.</description><subject>Afatinib</subject><subject>Enzyme Activation</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - chemistry</subject><subject>ErbB Receptors - metabolism</subject><subject>Humans</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - drug effects</subject><subject>Protein Kinase Inhibitors - chemistry</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinases - metabolism</subject><subject>Quinazolines - chemistry</subject><subject>Quinazolines - pharmacology</subject><subject>Structure-Activity Relationship</subject><subject>Tumor Cells, Cultured</subject><issn>2451-9456</issn><issn>2451-9448</issn><issn>2451-9456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFFPwjAUhRujEYL-BbM_wLxd13V7MSIBNGJMjD43XXsnJWMl7UD99w5Rok8-3XPTc85NP0IuKMQUaHa5jPUCV6V1dZx0eww8BiqOSD9JOR0WaZofHzTPeuQ8hCVA52SCMnFKeolIE5Ew6JPHB1ej3tTKRzcq2BBVzkdPaNx7NNKt3arWuiZyVTRZW4N-pepo5t1bu4imSrdfXo3rnbi3jQp4Rk4qVQc8_54D8jKdPI9vh_PH2d14NB9qzkQ7RJVrXrAc0sxoDowZRQ0gFAXLIEkVU6JTmTBFxQCwyjXLyzIRRtOsyGjFBuRq37velCs0GpvWq1quvV0p_yGdsvLvS2MX8tVtZVrwnEPaFWT7Au1dCB6rQ5aC3FGWS_lDWe4oS-Cyo9wFL35fPsR-mHaG670Bu_9vLXoZtMVGo7EedSuNs__d-AQYapJK</recordid><startdate>20160721</startdate><enddate>20160721</enddate><creator>Truong, Thu H.</creator><creator>Ung, Peter Man-Un</creator><creator>Palde, Prakash B.</creator><creator>Paulsen, Candice E.</creator><creator>Schlessinger, Avner</creator><creator>Carroll, Kate S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160721</creationdate><title>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</title><author>Truong, Thu H. ; Ung, Peter Man-Un ; Palde, Prakash B. ; Paulsen, Candice E. ; Schlessinger, Avner ; Carroll, Kate S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Afatinib</topic><topic>Enzyme Activation</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - chemistry</topic><topic>ErbB Receptors - metabolism</topic><topic>Humans</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - drug effects</topic><topic>Protein Kinase Inhibitors - chemistry</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinases - metabolism</topic><topic>Quinazolines - chemistry</topic><topic>Quinazolines - pharmacology</topic><topic>Structure-Activity Relationship</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, Thu H.</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Paulsen, Candice E.</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Carroll, Kate S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, Thu H.</au><au>Ung, Peter Man-Un</au><au>Palde, Prakash B.</au><au>Paulsen, Candice E.</au><au>Schlessinger, Avner</au><au>Carroll, Kate S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</atitle><jtitle>Cell chemical biology</jtitle><addtitle>Cell Chem Biol</addtitle><date>2016-07-21</date><risdate>2016</risdate><volume>23</volume><issue>7</issue><spage>837</spage><epage>848</epage><pages>837-848</pages><issn>2451-9456</issn><eissn>2451-9448</eissn><eissn>2451-9456</eissn><abstract>Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology. [Display omitted] •The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27427230</pmid><doi>10.1016/j.chembiol.2016.05.017</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2451-9456
ispartof Cell chemical biology, 2016-07, Vol.23 (7), p.837-848
issn 2451-9456
2451-9448
2451-9456
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4958504
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Afatinib
Enzyme Activation
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - chemistry
ErbB Receptors - metabolism
Humans
Molecular Dynamics Simulation
Mutation
Oxidation-Reduction
Oxidative Stress - drug effects
Protein Kinase Inhibitors - chemistry
Protein Kinase Inhibitors - pharmacology
Protein Kinases - metabolism
Quinazolines - chemistry
Quinazolines - pharmacology
Structure-Activity Relationship
Tumor Cells, Cultured
title Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Basis%20for%20Redox%20Activation%20of%20Epidermal%20Growth%20Factor%20Receptor%20Kinase&rft.jtitle=Cell%20chemical%20biology&rft.au=Truong,%20Thu%C2%A0H.&rft.date=2016-07-21&rft.volume=23&rft.issue=7&rft.spage=837&rft.epage=848&rft.pages=837-848&rft.issn=2451-9456&rft.eissn=2451-9448&rft_id=info:doi/10.1016/j.chembiol.2016.05.017&rft_dat=%3Cpubmed_cross%3E27427230%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27427230&rft_els_id=S2451945616301970&rfr_iscdi=true