Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase
Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to acti...
Gespeichert in:
Veröffentlicht in: | Cell chemical biology 2016-07, Vol.23 (7), p.837-848 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 848 |
---|---|
container_issue | 7 |
container_start_page | 837 |
container_title | Cell chemical biology |
container_volume | 23 |
creator | Truong, Thu H. Ung, Peter Man-Un Palde, Prakash B. Paulsen, Candice E. Schlessinger, Avner Carroll, Kate S. |
description | Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology.
[Display omitted]
•The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib
Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors. |
doi_str_mv | 10.1016/j.chembiol.2016.05.017 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4958504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2451945616301970</els_id><sourcerecordid>27427230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</originalsourceid><addsrcrecordid>eNqFkFFPwjAUhRujEYL-BbM_wLxd13V7MSIBNGJMjD43XXsnJWMl7UD99w5Rok8-3XPTc85NP0IuKMQUaHa5jPUCV6V1dZx0eww8BiqOSD9JOR0WaZofHzTPeuQ8hCVA52SCMnFKeolIE5Ew6JPHB1ej3tTKRzcq2BBVzkdPaNx7NNKt3arWuiZyVTRZW4N-pepo5t1bu4imSrdfXo3rnbi3jQp4Rk4qVQc8_54D8jKdPI9vh_PH2d14NB9qzkQ7RJVrXrAc0sxoDowZRQ0gFAXLIEkVU6JTmTBFxQCwyjXLyzIRRtOsyGjFBuRq37velCs0GpvWq1quvV0p_yGdsvLvS2MX8tVtZVrwnEPaFWT7Au1dCB6rQ5aC3FGWS_lDWe4oS-Cyo9wFL35fPsR-mHaG670Bu_9vLXoZtMVGo7EedSuNs__d-AQYapJK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Truong, Thu H. ; Ung, Peter Man-Un ; Palde, Prakash B. ; Paulsen, Candice E. ; Schlessinger, Avner ; Carroll, Kate S.</creator><creatorcontrib>Truong, Thu H. ; Ung, Peter Man-Un ; Palde, Prakash B. ; Paulsen, Candice E. ; Schlessinger, Avner ; Carroll, Kate S.</creatorcontrib><description>Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology.
[Display omitted]
•The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib
Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors.</description><identifier>ISSN: 2451-9456</identifier><identifier>EISSN: 2451-9448</identifier><identifier>EISSN: 2451-9456</identifier><identifier>DOI: 10.1016/j.chembiol.2016.05.017</identifier><identifier>PMID: 27427230</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Afatinib ; Enzyme Activation ; ErbB Receptors - antagonists & inhibitors ; ErbB Receptors - chemistry ; ErbB Receptors - metabolism ; Humans ; Molecular Dynamics Simulation ; Mutation ; Oxidation-Reduction ; Oxidative Stress - drug effects ; Protein Kinase Inhibitors - chemistry ; Protein Kinase Inhibitors - pharmacology ; Protein Kinases - metabolism ; Quinazolines - chemistry ; Quinazolines - pharmacology ; Structure-Activity Relationship ; Tumor Cells, Cultured</subject><ispartof>Cell chemical biology, 2016-07, Vol.23 (7), p.837-848</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</citedby><cites>FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27427230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, Thu H.</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Paulsen, Candice E.</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Carroll, Kate S.</creatorcontrib><title>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</title><title>Cell chemical biology</title><addtitle>Cell Chem Biol</addtitle><description>Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology.
[Display omitted]
•The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib
Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors.</description><subject>Afatinib</subject><subject>Enzyme Activation</subject><subject>ErbB Receptors - antagonists & inhibitors</subject><subject>ErbB Receptors - chemistry</subject><subject>ErbB Receptors - metabolism</subject><subject>Humans</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - drug effects</subject><subject>Protein Kinase Inhibitors - chemistry</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinases - metabolism</subject><subject>Quinazolines - chemistry</subject><subject>Quinazolines - pharmacology</subject><subject>Structure-Activity Relationship</subject><subject>Tumor Cells, Cultured</subject><issn>2451-9456</issn><issn>2451-9448</issn><issn>2451-9456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFFPwjAUhRujEYL-BbM_wLxd13V7MSIBNGJMjD43XXsnJWMl7UD99w5Rok8-3XPTc85NP0IuKMQUaHa5jPUCV6V1dZx0eww8BiqOSD9JOR0WaZofHzTPeuQ8hCVA52SCMnFKeolIE5Ew6JPHB1ej3tTKRzcq2BBVzkdPaNx7NNKt3arWuiZyVTRZW4N-pepo5t1bu4imSrdfXo3rnbi3jQp4Rk4qVQc8_54D8jKdPI9vh_PH2d14NB9qzkQ7RJVrXrAc0sxoDowZRQ0gFAXLIEkVU6JTmTBFxQCwyjXLyzIRRtOsyGjFBuRq37velCs0GpvWq1quvV0p_yGdsvLvS2MX8tVtZVrwnEPaFWT7Au1dCB6rQ5aC3FGWS_lDWe4oS-Cyo9wFL35fPsR-mHaG670Bu_9vLXoZtMVGo7EedSuNs__d-AQYapJK</recordid><startdate>20160721</startdate><enddate>20160721</enddate><creator>Truong, Thu H.</creator><creator>Ung, Peter Man-Un</creator><creator>Palde, Prakash B.</creator><creator>Paulsen, Candice E.</creator><creator>Schlessinger, Avner</creator><creator>Carroll, Kate S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160721</creationdate><title>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</title><author>Truong, Thu H. ; Ung, Peter Man-Un ; Palde, Prakash B. ; Paulsen, Candice E. ; Schlessinger, Avner ; Carroll, Kate S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-ea8c5938046dc5033da1d0e09936024a3a793667d9f300ef8c38bb27dc16961f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Afatinib</topic><topic>Enzyme Activation</topic><topic>ErbB Receptors - antagonists & inhibitors</topic><topic>ErbB Receptors - chemistry</topic><topic>ErbB Receptors - metabolism</topic><topic>Humans</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - drug effects</topic><topic>Protein Kinase Inhibitors - chemistry</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinases - metabolism</topic><topic>Quinazolines - chemistry</topic><topic>Quinazolines - pharmacology</topic><topic>Structure-Activity Relationship</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, Thu H.</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Paulsen, Candice E.</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Carroll, Kate S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, Thu H.</au><au>Ung, Peter Man-Un</au><au>Palde, Prakash B.</au><au>Paulsen, Candice E.</au><au>Schlessinger, Avner</au><au>Carroll, Kate S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase</atitle><jtitle>Cell chemical biology</jtitle><addtitle>Cell Chem Biol</addtitle><date>2016-07-21</date><risdate>2016</risdate><volume>23</volume><issue>7</issue><spage>837</spage><epage>848</epage><pages>837-848</pages><issn>2451-9456</issn><eissn>2451-9448</eissn><eissn>2451-9456</eissn><abstract>Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology.
[Display omitted]
•The EGFR active-site cysteine (C797) is a target of NADPH oxidase-derived H2O2•Unique biochemical properties distinguish C797 within the cysteine proteome•C797 sulfenylation allows new electrostatic interactions with the catalytic loop•Chronic oxidative stress yields an EGFR population that is refractory to afatinib
Truong et al. elucidate the molecular mechanism underlying redox activation of EGFR. Sulfenylation of C797 activates EGFR kinase through new electrostatic interactions, which may induce a favorable change in catalytic loop dynamics. Furthermore, C797 sulfenylation and H2O2 stress affects the pharmacology of covalent, thiol-targeted EGFR inhibitors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27427230</pmid><doi>10.1016/j.chembiol.2016.05.017</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2451-9456 |
ispartof | Cell chemical biology, 2016-07, Vol.23 (7), p.837-848 |
issn | 2451-9456 2451-9448 2451-9456 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4958504 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Afatinib Enzyme Activation ErbB Receptors - antagonists & inhibitors ErbB Receptors - chemistry ErbB Receptors - metabolism Humans Molecular Dynamics Simulation Mutation Oxidation-Reduction Oxidative Stress - drug effects Protein Kinase Inhibitors - chemistry Protein Kinase Inhibitors - pharmacology Protein Kinases - metabolism Quinazolines - chemistry Quinazolines - pharmacology Structure-Activity Relationship Tumor Cells, Cultured |
title | Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Basis%20for%20Redox%20Activation%20of%20Epidermal%20Growth%20Factor%20Receptor%20Kinase&rft.jtitle=Cell%20chemical%20biology&rft.au=Truong,%20Thu%C2%A0H.&rft.date=2016-07-21&rft.volume=23&rft.issue=7&rft.spage=837&rft.epage=848&rft.pages=837-848&rft.issn=2451-9456&rft.eissn=2451-9448&rft_id=info:doi/10.1016/j.chembiol.2016.05.017&rft_dat=%3Cpubmed_cross%3E27427230%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27427230&rft_els_id=S2451945616301970&rfr_iscdi=true |