Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin

Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2016-07, Vol.143 (14), p.2629-2640
Hauptverfasser: Blundon, Malachi A, Schlesinger, Danielle R, Parthasarathy, Amritha, Smith, Samantha L, Kolev, Hannah M, Vinson, David A, Kunttas-Tatli, Ezgi, McCartney, Brooke M, Minden, Jonathan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2640
container_issue 14
container_start_page 2629
container_title Development (Cambridge)
container_volume 143
creator Blundon, Malachi A
Schlesinger, Danielle R
Parthasarathy, Amritha
Smith, Samantha L
Kolev, Hannah M
Vinson, David A
Kunttas-Tatli, Ezgi
McCartney, Brooke M
Minden, Jonathan S
description Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.
doi_str_mv 10.1242/dev.130567
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4958330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1811889582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-559cdcd9bdc7906b51b67eb2582cad1035ab94d5762e498417c82c0ded3909d23</originalsourceid><addsrcrecordid>eNqNkcFOGzEQhq0KVELaCw-AfESVNtje9dq-IKGoLUhI5NCeLa89SY127WBvInitPgjPVNOkUblxGs3MN__M6EfojJIZZQ27dLCd0ZrwVnxAE9oIUSnK1BGaEMVJRZWiJ-g05wdCSN0K8RGdMMGkkERN0NMixRHi4C02wfTP2WecYAumz_h6Ma8crCE4CCNexzxWYzIh92b0scB4iM4vvf2b5jLvsH9FSw1KikPcQl_UVpsyEROOS_zyuyo4BB8-oeNlWQKf93GKfn77-mN-U93df7-dX99VtqF0rDhX1lmnOmeFIm3HadcK6BiXzBpHSc1NpxrHRcugUbKhwpYOceBqRZRj9RRd7XTXm24AZ8t9yfR6nfxg0rOOxuu3neB_6VXc6kZxWdekCFzsBVJ83EAe9eCzhb43AeImayoplbLA7B0oaYmQQqiCftmhNsWcEywPF1GiX13VxVW9c7XA5___cED_2Vj_Ad62oXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806078779</pqid></control><display><type>article</type><title>Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin</title><source>Company of Biologists,COB,生物学家联盟</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Blundon, Malachi A ; Schlesinger, Danielle R ; Parthasarathy, Amritha ; Smith, Samantha L ; Kolev, Hannah M ; Vinson, David A ; Kunttas-Tatli, Ezgi ; McCartney, Brooke M ; Minden, Jonathan S</creator><creatorcontrib>Blundon, Malachi A ; Schlesinger, Danielle R ; Parthasarathy, Amritha ; Smith, Samantha L ; Kolev, Hannah M ; Vinson, David A ; Kunttas-Tatli, Ezgi ; McCartney, Brooke M ; Minden, Jonathan S</creatorcontrib><description>Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.130567</identifier><identifier>PMID: 27287809</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; beta Catenin - metabolism ; Drosophila ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - metabolism ; Electrophoresis, Gel, Two-Dimensional ; Embryo, Nonmammalian - metabolism ; Embryonic Development ; Epistasis, Genetic ; Immunoblotting ; Mass Spectrometry ; Mutation - genetics ; Phenotype ; Phosphorylation ; Protein Isoforms - metabolism ; Protein Processing, Post-Translational ; Proteome - metabolism ; Proteomics - methods ; Reproducibility of Results ; Transcription, Genetic ; Tumor Suppressor Proteins - metabolism ; Wnt Signaling Pathway</subject><ispartof>Development (Cambridge), 2016-07, Vol.143 (14), p.2629-2640</ispartof><rights>2016. Published by The Company of Biologists Ltd.</rights><rights>2016. Published by The Company of Biologists Ltd 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-559cdcd9bdc7906b51b67eb2582cad1035ab94d5762e498417c82c0ded3909d23</citedby><cites>FETCH-LOGICAL-c411t-559cdcd9bdc7906b51b67eb2582cad1035ab94d5762e498417c82c0ded3909d23</cites><orcidid>0000-0003-3175-393X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27287809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blundon, Malachi A</creatorcontrib><creatorcontrib>Schlesinger, Danielle R</creatorcontrib><creatorcontrib>Parthasarathy, Amritha</creatorcontrib><creatorcontrib>Smith, Samantha L</creatorcontrib><creatorcontrib>Kolev, Hannah M</creatorcontrib><creatorcontrib>Vinson, David A</creatorcontrib><creatorcontrib>Kunttas-Tatli, Ezgi</creatorcontrib><creatorcontrib>McCartney, Brooke M</creatorcontrib><creatorcontrib>Minden, Jonathan S</creatorcontrib><title>Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.</description><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - metabolism</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryonic Development</subject><subject>Epistasis, Genetic</subject><subject>Immunoblotting</subject><subject>Mass Spectrometry</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Phosphorylation</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteome - metabolism</subject><subject>Proteomics - methods</subject><subject>Reproducibility of Results</subject><subject>Transcription, Genetic</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Wnt Signaling Pathway</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFOGzEQhq0KVELaCw-AfESVNtje9dq-IKGoLUhI5NCeLa89SY127WBvInitPgjPVNOkUblxGs3MN__M6EfojJIZZQ27dLCd0ZrwVnxAE9oIUSnK1BGaEMVJRZWiJ-g05wdCSN0K8RGdMMGkkERN0NMixRHi4C02wfTP2WecYAumz_h6Ma8crCE4CCNexzxWYzIh92b0scB4iM4vvf2b5jLvsH9FSw1KikPcQl_UVpsyEROOS_zyuyo4BB8-oeNlWQKf93GKfn77-mN-U93df7-dX99VtqF0rDhX1lmnOmeFIm3HadcK6BiXzBpHSc1NpxrHRcugUbKhwpYOceBqRZRj9RRd7XTXm24AZ8t9yfR6nfxg0rOOxuu3neB_6VXc6kZxWdekCFzsBVJ83EAe9eCzhb43AeImayoplbLA7B0oaYmQQqiCftmhNsWcEywPF1GiX13VxVW9c7XA5___cED_2Vj_Ad62oXw</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Blundon, Malachi A</creator><creator>Schlesinger, Danielle R</creator><creator>Parthasarathy, Amritha</creator><creator>Smith, Samantha L</creator><creator>Kolev, Hannah M</creator><creator>Vinson, David A</creator><creator>Kunttas-Tatli, Ezgi</creator><creator>McCartney, Brooke M</creator><creator>Minden, Jonathan S</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3175-393X</orcidid></search><sort><creationdate>20160715</creationdate><title>Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin</title><author>Blundon, Malachi A ; Schlesinger, Danielle R ; Parthasarathy, Amritha ; Smith, Samantha L ; Kolev, Hannah M ; Vinson, David A ; Kunttas-Tatli, Ezgi ; McCartney, Brooke M ; Minden, Jonathan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-559cdcd9bdc7906b51b67eb2582cad1035ab94d5762e498417c82c0ded3909d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - metabolism</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryonic Development</topic><topic>Epistasis, Genetic</topic><topic>Immunoblotting</topic><topic>Mass Spectrometry</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Phosphorylation</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteome - metabolism</topic><topic>Proteomics - methods</topic><topic>Reproducibility of Results</topic><topic>Transcription, Genetic</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blundon, Malachi A</creatorcontrib><creatorcontrib>Schlesinger, Danielle R</creatorcontrib><creatorcontrib>Parthasarathy, Amritha</creatorcontrib><creatorcontrib>Smith, Samantha L</creatorcontrib><creatorcontrib>Kolev, Hannah M</creatorcontrib><creatorcontrib>Vinson, David A</creatorcontrib><creatorcontrib>Kunttas-Tatli, Ezgi</creatorcontrib><creatorcontrib>McCartney, Brooke M</creatorcontrib><creatorcontrib>Minden, Jonathan S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blundon, Malachi A</au><au>Schlesinger, Danielle R</au><au>Parthasarathy, Amritha</au><au>Smith, Samantha L</au><au>Kolev, Hannah M</au><au>Vinson, David A</au><au>Kunttas-Tatli, Ezgi</au><au>McCartney, Brooke M</au><au>Minden, Jonathan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2016-07-15</date><risdate>2016</risdate><volume>143</volume><issue>14</issue><spage>2629</spage><epage>2640</epage><pages>2629-2640</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>27287809</pmid><doi>10.1242/dev.130567</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3175-393X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2016-07, Vol.143 (14), p.2629-2640
issn 0950-1991
1477-9129
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4958330
source Company of Biologists,COB,生物学家联盟; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
beta Catenin - metabolism
Drosophila
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - metabolism
Electrophoresis, Gel, Two-Dimensional
Embryo, Nonmammalian - metabolism
Embryonic Development
Epistasis, Genetic
Immunoblotting
Mass Spectrometry
Mutation - genetics
Phenotype
Phosphorylation
Protein Isoforms - metabolism
Protein Processing, Post-Translational
Proteome - metabolism
Proteomics - methods
Reproducibility of Results
Transcription, Genetic
Tumor Suppressor Proteins - metabolism
Wnt Signaling Pathway
title Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20analysis%20reveals%20APC-dependent%20post-translational%20modifications%20and%20identifies%20a%20novel%20regulator%20of%20%CE%B2-catenin&rft.jtitle=Development%20(Cambridge)&rft.au=Blundon,%20Malachi%20A&rft.date=2016-07-15&rft.volume=143&rft.issue=14&rft.spage=2629&rft.epage=2640&rft.pages=2629-2640&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.130567&rft_dat=%3Cproquest_pubme%3E1811889582%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806078779&rft_id=info:pmid/27287809&rfr_iscdi=true