Noncoding RNAs in the regulation of skeletal muscle biology in health and disease

Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Molecular Medicine 2016-08, Vol.94 (8), p.853-866
Hauptverfasser: Simionescu-Bankston, Adriana, Kumar, Ashok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response to environmental stimuli leading to atrophy or hypertrophy. Moreover, degeneration of skeletal muscle is a common feature in a number of muscular disorders including muscular dystrophy. Emerging evidence suggests that noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are critical for skeletal muscle physiology. Several miRNAs and lncRNAs have now been found to control skeletal muscle development and regeneration. Noncoding RNAs also play an important role in the regulation of skeletal muscle mass in adults. Furthermore, aberrant expression of miRNAs and lncRNAs has been observed in several muscular disorders. In this article, we discuss the mechanisms of action of miRNAs and lncRNAs in skeletal muscle formation, growth, regeneration, and disease. We further highlight potential therapeutic strategies for utilizing noncoding RNAs to improve skeletal muscle function.
ISSN:0946-2716
1432-1440
DOI:10.1007/s00109-016-1443-y