Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD

Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2016-08, Vol.65 (8), p.2187-2200
Hauptverfasser: Softic, Samir, Boucher, Jeremie, Solheim, Marie H, Fujisaka, Shiho, Haering, Max-Felix, Homan, Erica P, Winnay, Jonathon, Perez-Atayde, Antonio R, Kahn, C Ronald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2200
container_issue 8
container_start_page 2187
container_title Diabetes (New York, N.Y.)
container_volume 65
creator Softic, Samir
Boucher, Jeremie
Solheim, Marie H
Fujisaka, Shiho
Haering, Max-Felix
Homan, Erica P
Winnay, Jonathon
Perez-Atayde, Antonio R
Kahn, C Ronald
description Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.
doi_str_mv 10.2337/db16-0213
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4955986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1807276330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-59bd5009cc1a27fa7ac2ecde972f5b955320cf07091b9703cef56bdcbd902eb53</originalsourceid><addsrcrecordid>eNpVkc1LxDAQxYMo7vpx8B-QHPVQnSTbxlyERV1dXFT8AG-hTaca7TY1aYX9782iLsocBt57_GbgEbLH4IgLIY_LgmUJcCbWyJApoRLB5fM6GQIwnjCp5IBshfAGAFmcTTLgkoNMGQyJmdnWlYvQede-Luh5j7RzdFxGNSB9tCH0mDy0aGxlDZ02oa9tQ-_RYNs5T68bZ95d30UlOl2g0bzz7sVjCPYT6c14MjvfIRtVXgfc_dnb5Gly8Xh2lcxuL6dn41liRiPWJakqyhRAGcNyLqtc5oajKVFJXqWFSlPBwVQgQbFCSRAGqzQrSlOUCjgWqdgmp9_cti_mWBpsOp_XuvV2nvuFdrnV_53GvuoX96lHEa5Osgg4-AF499Fj6PTcBoN1nTfo-qDZCUguMyEgRg-_o8a7EDxWqzMM9LIUvSxFL0uJ2f2_f62Svy2IL0u_ic4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807276330</pqid></control><display><type>article</type><title>Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Softic, Samir ; Boucher, Jeremie ; Solheim, Marie H ; Fujisaka, Shiho ; Haering, Max-Felix ; Homan, Erica P ; Winnay, Jonathon ; Perez-Atayde, Antonio R ; Kahn, C Ronald</creator><creatorcontrib>Softic, Samir ; Boucher, Jeremie ; Solheim, Marie H ; Fujisaka, Shiho ; Haering, Max-Felix ; Homan, Erica P ; Winnay, Jonathon ; Perez-Atayde, Antonio R ; Kahn, C Ronald</creatorcontrib><description>Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db16-0213</identifier><identifier>PMID: 27207510</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adipose Tissue - metabolism ; Alanine Transaminase - metabolism ; Animals ; Blood Glucose - metabolism ; Diet, High-Fat ; Disease Models, Animal ; Fatty Liver - genetics ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Fibroblast Growth Factors - metabolism ; Glucose Tolerance Test ; Glycogen - metabolism ; Immunoblotting ; Immunohistochemistry ; Insulin-Like Growth Factor I - metabolism ; Lipodystrophy - genetics ; Lipodystrophy - metabolism ; Liver - metabolism ; Liver - pathology ; Metabolism ; Mice ; Mice, Knockout ; Non-alcoholic Fatty Liver Disease - genetics ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Receptor, Insulin - genetics ; Receptor, Insulin - metabolism</subject><ispartof>Diabetes (New York, N.Y.), 2016-08, Vol.65 (8), p.2187-2200</ispartof><rights>2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.</rights><rights>2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-59bd5009cc1a27fa7ac2ecde972f5b955320cf07091b9703cef56bdcbd902eb53</citedby><cites>FETCH-LOGICAL-c441t-59bd5009cc1a27fa7ac2ecde972f5b955320cf07091b9703cef56bdcbd902eb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955986/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955986/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27207510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Softic, Samir</creatorcontrib><creatorcontrib>Boucher, Jeremie</creatorcontrib><creatorcontrib>Solheim, Marie H</creatorcontrib><creatorcontrib>Fujisaka, Shiho</creatorcontrib><creatorcontrib>Haering, Max-Felix</creatorcontrib><creatorcontrib>Homan, Erica P</creatorcontrib><creatorcontrib>Winnay, Jonathon</creatorcontrib><creatorcontrib>Perez-Atayde, Antonio R</creatorcontrib><creatorcontrib>Kahn, C Ronald</creatorcontrib><title>Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.</description><subject>Adipose Tissue - metabolism</subject><subject>Alanine Transaminase - metabolism</subject><subject>Animals</subject><subject>Blood Glucose - metabolism</subject><subject>Diet, High-Fat</subject><subject>Disease Models, Animal</subject><subject>Fatty Liver - genetics</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Glucose Tolerance Test</subject><subject>Glycogen - metabolism</subject><subject>Immunoblotting</subject><subject>Immunohistochemistry</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Lipodystrophy - genetics</subject><subject>Lipodystrophy - metabolism</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Receptor, Insulin - genetics</subject><subject>Receptor, Insulin - metabolism</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1LxDAQxYMo7vpx8B-QHPVQnSTbxlyERV1dXFT8AG-hTaca7TY1aYX9782iLsocBt57_GbgEbLH4IgLIY_LgmUJcCbWyJApoRLB5fM6GQIwnjCp5IBshfAGAFmcTTLgkoNMGQyJmdnWlYvQede-Luh5j7RzdFxGNSB9tCH0mDy0aGxlDZ02oa9tQ-_RYNs5T68bZ95d30UlOl2g0bzz7sVjCPYT6c14MjvfIRtVXgfc_dnb5Gly8Xh2lcxuL6dn41liRiPWJakqyhRAGcNyLqtc5oajKVFJXqWFSlPBwVQgQbFCSRAGqzQrSlOUCjgWqdgmp9_cti_mWBpsOp_XuvV2nvuFdrnV_53GvuoX96lHEa5Osgg4-AF499Fj6PTcBoN1nTfo-qDZCUguMyEgRg-_o8a7EDxWqzMM9LIUvSxFL0uJ2f2_f62Svy2IL0u_ic4</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Softic, Samir</creator><creator>Boucher, Jeremie</creator><creator>Solheim, Marie H</creator><creator>Fujisaka, Shiho</creator><creator>Haering, Max-Felix</creator><creator>Homan, Erica P</creator><creator>Winnay, Jonathon</creator><creator>Perez-Atayde, Antonio R</creator><creator>Kahn, C Ronald</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160801</creationdate><title>Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD</title><author>Softic, Samir ; Boucher, Jeremie ; Solheim, Marie H ; Fujisaka, Shiho ; Haering, Max-Felix ; Homan, Erica P ; Winnay, Jonathon ; Perez-Atayde, Antonio R ; Kahn, C Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-59bd5009cc1a27fa7ac2ecde972f5b955320cf07091b9703cef56bdcbd902eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adipose Tissue - metabolism</topic><topic>Alanine Transaminase - metabolism</topic><topic>Animals</topic><topic>Blood Glucose - metabolism</topic><topic>Diet, High-Fat</topic><topic>Disease Models, Animal</topic><topic>Fatty Liver - genetics</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Glucose Tolerance Test</topic><topic>Glycogen - metabolism</topic><topic>Immunoblotting</topic><topic>Immunohistochemistry</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Lipodystrophy - genetics</topic><topic>Lipodystrophy - metabolism</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Receptor, Insulin - genetics</topic><topic>Receptor, Insulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Softic, Samir</creatorcontrib><creatorcontrib>Boucher, Jeremie</creatorcontrib><creatorcontrib>Solheim, Marie H</creatorcontrib><creatorcontrib>Fujisaka, Shiho</creatorcontrib><creatorcontrib>Haering, Max-Felix</creatorcontrib><creatorcontrib>Homan, Erica P</creatorcontrib><creatorcontrib>Winnay, Jonathon</creatorcontrib><creatorcontrib>Perez-Atayde, Antonio R</creatorcontrib><creatorcontrib>Kahn, C Ronald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Softic, Samir</au><au>Boucher, Jeremie</au><au>Solheim, Marie H</au><au>Fujisaka, Shiho</au><au>Haering, Max-Felix</au><au>Homan, Erica P</au><au>Winnay, Jonathon</au><au>Perez-Atayde, Antonio R</au><au>Kahn, C Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>65</volume><issue>8</issue><spage>2187</spage><epage>2200</epage><pages>2187-2200</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>27207510</pmid><doi>10.2337/db16-0213</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2016-08, Vol.65 (8), p.2187-2200
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4955986
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adipose Tissue - metabolism
Alanine Transaminase - metabolism
Animals
Blood Glucose - metabolism
Diet, High-Fat
Disease Models, Animal
Fatty Liver - genetics
Fatty Liver - metabolism
Fatty Liver - pathology
Fibroblast Growth Factors - metabolism
Glucose Tolerance Test
Glycogen - metabolism
Immunoblotting
Immunohistochemistry
Insulin-Like Growth Factor I - metabolism
Lipodystrophy - genetics
Lipodystrophy - metabolism
Liver - metabolism
Liver - pathology
Metabolism
Mice
Mice, Knockout
Non-alcoholic Fatty Liver Disease - genetics
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
Receptor, Insulin - genetics
Receptor, Insulin - metabolism
title Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipodystrophy%20Due%20to%20Adipose%20Tissue-Specific%20Insulin%20Receptor%20Knockout%20Results%20in%20Progressive%20NAFLD&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Softic,%20Samir&rft.date=2016-08-01&rft.volume=65&rft.issue=8&rft.spage=2187&rft.epage=2200&rft.pages=2187-2200&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db16-0213&rft_dat=%3Cproquest_pubme%3E1807276330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807276330&rft_id=info:pmid/27207510&rfr_iscdi=true