Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures
Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo me...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2014-01, Vol.343 (6170), p.529-533 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 533 |
---|---|
container_issue | 6170 |
container_start_page | 529 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 343 |
creator | Shikuma, Nicholas J. Pilhofer, Martin Weiss, Gregor L. Hadfield, Michael G. Jensen, Grant J. Newman, Dianne K. |
description | Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development. |
doi_str_mv | 10.1126/science.1246794 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4949041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24742868</jstor_id><sourcerecordid>24742868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzQpkiQ2btP65ceINUqn4qTQVSJQFK8txbjoeknhqJ6DZ8Q68IU-CRzNUhQ0ryz7fPbo-h5CnnJ1wLtRpch5HhydcgKo03CMLznRZaMHkfbJgTKqiZlV5RB6ltGYsa1o-JEcCgFVQiwX5cmmjH5FezQ1-D3GglzjZIcTNKiSf6MXYzg5b2mzpWYx2m2jo6GvrJoze9vTjyl7nWev7Xz9-Lv1XpJ-mOLtpjpgekwed7RM-OZzH5PPbN1fn74vlh3cX52fLwpUgpqLuhBYl64TViosGEJq2RahRWpZf2rrhFW9Vp0olsOXSocN8EZ0FqZuylsfk1d53MzcDtg7HKdrebKIfbNyaYL35Wxn9ylyHbwY0aAY8G7w8GMRwM2OazOCTw763I4Y5GZFzkwyAi_-iHLSsWQ58t9aLf9B1mOOYk9hRQnMtQWXqdE-5GFKK2N3uzZnZNWwODZtDw3ni-d3v3vJ_Ks3Asz2wTlOId_QKRK1q-Rtvl63_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492919346</pqid></control><display><type>article</type><title>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Shikuma, Nicholas J. ; Pilhofer, Martin ; Weiss, Gregor L. ; Hadfield, Michael G. ; Jensen, Grant J. ; Newman, Dianne K.</creator><creatorcontrib>Shikuma, Nicholas J. ; Pilhofer, Martin ; Weiss, Gregor L. ; Hadfield, Michael G. ; Jensen, Grant J. ; Newman, Dianne K.</creatorcontrib><description>Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1246794</identifier><identifier>PMID: 24407482</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Aquatic Organisms - growth & development ; Aquatic Organisms - microbiology ; Bacteria ; Bacteriocins ; Bacteriocins - genetics ; Bacteriocins - metabolism ; Bacteriophages ; Bacteriophages - ultrastructure ; Biofilms ; Cell aggregates ; Developmental biology ; drilling ; Fluorescence ; fouling ; Genes, Bacterial - physiology ; Invertebrates ; Larva - growth & development ; Larva - microbiology ; larvae ; Larval development ; Marine biology ; Metamorphosis ; Metamorphosis, Biological ; Molecular Sequence Data ; Mycobacterium avium complex ; Open Reading Frames ; Polychaeta - growth & development ; Polychaeta - microbiology ; Proteins ; Pseudoalteromonas - genetics ; Pseudoalteromonas - physiology ; Pseudoalteromonas - virology ; Pseudoalteromonas luteoviolacea ; rocks ; ships ; tube worms ; Viral Tail Proteins - genetics ; Viral Tail Proteins - physiology ; Worms</subject><ispartof>Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.529-533</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</citedby><cites>FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24742868$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24742868$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2870,2871,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24407482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shikuma, Nicholas J.</creatorcontrib><creatorcontrib>Pilhofer, Martin</creatorcontrib><creatorcontrib>Weiss, Gregor L.</creatorcontrib><creatorcontrib>Hadfield, Michael G.</creatorcontrib><creatorcontrib>Jensen, Grant J.</creatorcontrib><creatorcontrib>Newman, Dianne K.</creatorcontrib><title>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.</description><subject>Animals</subject><subject>Aquatic Organisms - growth & development</subject><subject>Aquatic Organisms - microbiology</subject><subject>Bacteria</subject><subject>Bacteriocins</subject><subject>Bacteriocins - genetics</subject><subject>Bacteriocins - metabolism</subject><subject>Bacteriophages</subject><subject>Bacteriophages - ultrastructure</subject><subject>Biofilms</subject><subject>Cell aggregates</subject><subject>Developmental biology</subject><subject>drilling</subject><subject>Fluorescence</subject><subject>fouling</subject><subject>Genes, Bacterial - physiology</subject><subject>Invertebrates</subject><subject>Larva - growth & development</subject><subject>Larva - microbiology</subject><subject>larvae</subject><subject>Larval development</subject><subject>Marine biology</subject><subject>Metamorphosis</subject><subject>Metamorphosis, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mycobacterium avium complex</subject><subject>Open Reading Frames</subject><subject>Polychaeta - growth & development</subject><subject>Polychaeta - microbiology</subject><subject>Proteins</subject><subject>Pseudoalteromonas - genetics</subject><subject>Pseudoalteromonas - physiology</subject><subject>Pseudoalteromonas - virology</subject><subject>Pseudoalteromonas luteoviolacea</subject><subject>rocks</subject><subject>ships</subject><subject>tube worms</subject><subject>Viral Tail Proteins - genetics</subject><subject>Viral Tail Proteins - physiology</subject><subject>Worms</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokNhzQpkiQ2btP65ceINUqn4qTQVSJQFK8txbjoeknhqJ6DZ8Q68IU-CRzNUhQ0ryz7fPbo-h5CnnJ1wLtRpch5HhydcgKo03CMLznRZaMHkfbJgTKqiZlV5RB6ltGYsa1o-JEcCgFVQiwX5cmmjH5FezQ1-D3GglzjZIcTNKiSf6MXYzg5b2mzpWYx2m2jo6GvrJoze9vTjyl7nWev7Xz9-Lv1XpJ-mOLtpjpgekwed7RM-OZzH5PPbN1fn74vlh3cX52fLwpUgpqLuhBYl64TViosGEJq2RahRWpZf2rrhFW9Vp0olsOXSocN8EZ0FqZuylsfk1d53MzcDtg7HKdrebKIfbNyaYL35Wxn9ylyHbwY0aAY8G7w8GMRwM2OazOCTw763I4Y5GZFzkwyAi_-iHLSsWQ58t9aLf9B1mOOYk9hRQnMtQWXqdE-5GFKK2N3uzZnZNWwODZtDw3ni-d3v3vJ_Ks3Asz2wTlOId_QKRK1q-Rtvl63_</recordid><startdate>20140131</startdate><enddate>20140131</enddate><creator>Shikuma, Nicholas J.</creator><creator>Pilhofer, Martin</creator><creator>Weiss, Gregor L.</creator><creator>Hadfield, Michael G.</creator><creator>Jensen, Grant J.</creator><creator>Newman, Dianne K.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140131</creationdate><title>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</title><author>Shikuma, Nicholas J. ; Pilhofer, Martin ; Weiss, Gregor L. ; Hadfield, Michael G. ; Jensen, Grant J. ; Newman, Dianne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Aquatic Organisms - growth & development</topic><topic>Aquatic Organisms - microbiology</topic><topic>Bacteria</topic><topic>Bacteriocins</topic><topic>Bacteriocins - genetics</topic><topic>Bacteriocins - metabolism</topic><topic>Bacteriophages</topic><topic>Bacteriophages - ultrastructure</topic><topic>Biofilms</topic><topic>Cell aggregates</topic><topic>Developmental biology</topic><topic>drilling</topic><topic>Fluorescence</topic><topic>fouling</topic><topic>Genes, Bacterial - physiology</topic><topic>Invertebrates</topic><topic>Larva - growth & development</topic><topic>Larva - microbiology</topic><topic>larvae</topic><topic>Larval development</topic><topic>Marine biology</topic><topic>Metamorphosis</topic><topic>Metamorphosis, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mycobacterium avium complex</topic><topic>Open Reading Frames</topic><topic>Polychaeta - growth & development</topic><topic>Polychaeta - microbiology</topic><topic>Proteins</topic><topic>Pseudoalteromonas - genetics</topic><topic>Pseudoalteromonas - physiology</topic><topic>Pseudoalteromonas - virology</topic><topic>Pseudoalteromonas luteoviolacea</topic><topic>rocks</topic><topic>ships</topic><topic>tube worms</topic><topic>Viral Tail Proteins - genetics</topic><topic>Viral Tail Proteins - physiology</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shikuma, Nicholas J.</creatorcontrib><creatorcontrib>Pilhofer, Martin</creatorcontrib><creatorcontrib>Weiss, Gregor L.</creatorcontrib><creatorcontrib>Hadfield, Michael G.</creatorcontrib><creatorcontrib>Jensen, Grant J.</creatorcontrib><creatorcontrib>Newman, Dianne K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shikuma, Nicholas J.</au><au>Pilhofer, Martin</au><au>Weiss, Gregor L.</au><au>Hadfield, Michael G.</au><au>Jensen, Grant J.</au><au>Newman, Dianne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-01-31</date><risdate>2014</risdate><volume>343</volume><issue>6170</issue><spage>529</spage><epage>533</epage><pages>529-533</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24407482</pmid><doi>10.1126/science.1246794</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.529-533 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4949041 |
source | MEDLINE; American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Animals Aquatic Organisms - growth & development Aquatic Organisms - microbiology Bacteria Bacteriocins Bacteriocins - genetics Bacteriocins - metabolism Bacteriophages Bacteriophages - ultrastructure Biofilms Cell aggregates Developmental biology drilling Fluorescence fouling Genes, Bacterial - physiology Invertebrates Larva - growth & development Larva - microbiology larvae Larval development Marine biology Metamorphosis Metamorphosis, Biological Molecular Sequence Data Mycobacterium avium complex Open Reading Frames Polychaeta - growth & development Polychaeta - microbiology Proteins Pseudoalteromonas - genetics Pseudoalteromonas - physiology Pseudoalteromonas - virology Pseudoalteromonas luteoviolacea rocks ships tube worms Viral Tail Proteins - genetics Viral Tail Proteins - physiology Worms |
title | Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20Tubeworm%20Metamorphosis%20Induced%20by%20Arrays%20of%20Bacterial%20Phage%20Tail%E2%80%93Like%20Structures&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shikuma,%20Nicholas%20J.&rft.date=2014-01-31&rft.volume=343&rft.issue=6170&rft.spage=529&rft.epage=533&rft.pages=529-533&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1246794&rft_dat=%3Cjstor_pubme%3E24742868%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492919346&rft_id=info:pmid/24407482&rft_jstor_id=24742868&rfr_iscdi=true |