Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures

Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-01, Vol.343 (6170), p.529-533
Hauptverfasser: Shikuma, Nicholas J., Pilhofer, Martin, Weiss, Gregor L., Hadfield, Michael G., Jensen, Grant J., Newman, Dianne K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 6170
container_start_page 529
container_title Science (American Association for the Advancement of Science)
container_volume 343
creator Shikuma, Nicholas J.
Pilhofer, Martin
Weiss, Gregor L.
Hadfield, Michael G.
Jensen, Grant J.
Newman, Dianne K.
description Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.
doi_str_mv 10.1126/science.1246794
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4949041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24742868</jstor_id><sourcerecordid>24742868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzQpkiQ2btP65ceINUqn4qTQVSJQFK8txbjoeknhqJ6DZ8Q68IU-CRzNUhQ0ryz7fPbo-h5CnnJ1wLtRpch5HhydcgKo03CMLznRZaMHkfbJgTKqiZlV5RB6ltGYsa1o-JEcCgFVQiwX5cmmjH5FezQ1-D3GglzjZIcTNKiSf6MXYzg5b2mzpWYx2m2jo6GvrJoze9vTjyl7nWev7Xz9-Lv1XpJ-mOLtpjpgekwed7RM-OZzH5PPbN1fn74vlh3cX52fLwpUgpqLuhBYl64TViosGEJq2RahRWpZf2rrhFW9Vp0olsOXSocN8EZ0FqZuylsfk1d53MzcDtg7HKdrebKIfbNyaYL35Wxn9ylyHbwY0aAY8G7w8GMRwM2OazOCTw763I4Y5GZFzkwyAi_-iHLSsWQ58t9aLf9B1mOOYk9hRQnMtQWXqdE-5GFKK2N3uzZnZNWwODZtDw3ni-d3v3vJ_Ks3Asz2wTlOId_QKRK1q-Rtvl63_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492919346</pqid></control><display><type>article</type><title>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Shikuma, Nicholas J. ; Pilhofer, Martin ; Weiss, Gregor L. ; Hadfield, Michael G. ; Jensen, Grant J. ; Newman, Dianne K.</creator><creatorcontrib>Shikuma, Nicholas J. ; Pilhofer, Martin ; Weiss, Gregor L. ; Hadfield, Michael G. ; Jensen, Grant J. ; Newman, Dianne K.</creatorcontrib><description>Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1246794</identifier><identifier>PMID: 24407482</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Aquatic Organisms - growth &amp; development ; Aquatic Organisms - microbiology ; Bacteria ; Bacteriocins ; Bacteriocins - genetics ; Bacteriocins - metabolism ; Bacteriophages ; Bacteriophages - ultrastructure ; Biofilms ; Cell aggregates ; Developmental biology ; drilling ; Fluorescence ; fouling ; Genes, Bacterial - physiology ; Invertebrates ; Larva - growth &amp; development ; Larva - microbiology ; larvae ; Larval development ; Marine biology ; Metamorphosis ; Metamorphosis, Biological ; Molecular Sequence Data ; Mycobacterium avium complex ; Open Reading Frames ; Polychaeta - growth &amp; development ; Polychaeta - microbiology ; Proteins ; Pseudoalteromonas - genetics ; Pseudoalteromonas - physiology ; Pseudoalteromonas - virology ; Pseudoalteromonas luteoviolacea ; rocks ; ships ; tube worms ; Viral Tail Proteins - genetics ; Viral Tail Proteins - physiology ; Worms</subject><ispartof>Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.529-533</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</citedby><cites>FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24742868$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24742868$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2870,2871,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24407482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shikuma, Nicholas J.</creatorcontrib><creatorcontrib>Pilhofer, Martin</creatorcontrib><creatorcontrib>Weiss, Gregor L.</creatorcontrib><creatorcontrib>Hadfield, Michael G.</creatorcontrib><creatorcontrib>Jensen, Grant J.</creatorcontrib><creatorcontrib>Newman, Dianne K.</creatorcontrib><title>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.</description><subject>Animals</subject><subject>Aquatic Organisms - growth &amp; development</subject><subject>Aquatic Organisms - microbiology</subject><subject>Bacteria</subject><subject>Bacteriocins</subject><subject>Bacteriocins - genetics</subject><subject>Bacteriocins - metabolism</subject><subject>Bacteriophages</subject><subject>Bacteriophages - ultrastructure</subject><subject>Biofilms</subject><subject>Cell aggregates</subject><subject>Developmental biology</subject><subject>drilling</subject><subject>Fluorescence</subject><subject>fouling</subject><subject>Genes, Bacterial - physiology</subject><subject>Invertebrates</subject><subject>Larva - growth &amp; development</subject><subject>Larva - microbiology</subject><subject>larvae</subject><subject>Larval development</subject><subject>Marine biology</subject><subject>Metamorphosis</subject><subject>Metamorphosis, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mycobacterium avium complex</subject><subject>Open Reading Frames</subject><subject>Polychaeta - growth &amp; development</subject><subject>Polychaeta - microbiology</subject><subject>Proteins</subject><subject>Pseudoalteromonas - genetics</subject><subject>Pseudoalteromonas - physiology</subject><subject>Pseudoalteromonas - virology</subject><subject>Pseudoalteromonas luteoviolacea</subject><subject>rocks</subject><subject>ships</subject><subject>tube worms</subject><subject>Viral Tail Proteins - genetics</subject><subject>Viral Tail Proteins - physiology</subject><subject>Worms</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokNhzQpkiQ2btP65ceINUqn4qTQVSJQFK8txbjoeknhqJ6DZ8Q68IU-CRzNUhQ0ryz7fPbo-h5CnnJ1wLtRpch5HhydcgKo03CMLznRZaMHkfbJgTKqiZlV5RB6ltGYsa1o-JEcCgFVQiwX5cmmjH5FezQ1-D3GglzjZIcTNKiSf6MXYzg5b2mzpWYx2m2jo6GvrJoze9vTjyl7nWev7Xz9-Lv1XpJ-mOLtpjpgekwed7RM-OZzH5PPbN1fn74vlh3cX52fLwpUgpqLuhBYl64TViosGEJq2RahRWpZf2rrhFW9Vp0olsOXSocN8EZ0FqZuylsfk1d53MzcDtg7HKdrebKIfbNyaYL35Wxn9ylyHbwY0aAY8G7w8GMRwM2OazOCTw763I4Y5GZFzkwyAi_-iHLSsWQ58t9aLf9B1mOOYk9hRQnMtQWXqdE-5GFKK2N3uzZnZNWwODZtDw3ni-d3v3vJ_Ks3Asz2wTlOId_QKRK1q-Rtvl63_</recordid><startdate>20140131</startdate><enddate>20140131</enddate><creator>Shikuma, Nicholas J.</creator><creator>Pilhofer, Martin</creator><creator>Weiss, Gregor L.</creator><creator>Hadfield, Michael G.</creator><creator>Jensen, Grant J.</creator><creator>Newman, Dianne K.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140131</creationdate><title>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</title><author>Shikuma, Nicholas J. ; Pilhofer, Martin ; Weiss, Gregor L. ; Hadfield, Michael G. ; Jensen, Grant J. ; Newman, Dianne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-8f29250f2a9612b4e4bdde48e3a0961d8b171d6f6562ed13cecef652fa439b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Aquatic Organisms - growth &amp; development</topic><topic>Aquatic Organisms - microbiology</topic><topic>Bacteria</topic><topic>Bacteriocins</topic><topic>Bacteriocins - genetics</topic><topic>Bacteriocins - metabolism</topic><topic>Bacteriophages</topic><topic>Bacteriophages - ultrastructure</topic><topic>Biofilms</topic><topic>Cell aggregates</topic><topic>Developmental biology</topic><topic>drilling</topic><topic>Fluorescence</topic><topic>fouling</topic><topic>Genes, Bacterial - physiology</topic><topic>Invertebrates</topic><topic>Larva - growth &amp; development</topic><topic>Larva - microbiology</topic><topic>larvae</topic><topic>Larval development</topic><topic>Marine biology</topic><topic>Metamorphosis</topic><topic>Metamorphosis, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mycobacterium avium complex</topic><topic>Open Reading Frames</topic><topic>Polychaeta - growth &amp; development</topic><topic>Polychaeta - microbiology</topic><topic>Proteins</topic><topic>Pseudoalteromonas - genetics</topic><topic>Pseudoalteromonas - physiology</topic><topic>Pseudoalteromonas - virology</topic><topic>Pseudoalteromonas luteoviolacea</topic><topic>rocks</topic><topic>ships</topic><topic>tube worms</topic><topic>Viral Tail Proteins - genetics</topic><topic>Viral Tail Proteins - physiology</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shikuma, Nicholas J.</creatorcontrib><creatorcontrib>Pilhofer, Martin</creatorcontrib><creatorcontrib>Weiss, Gregor L.</creatorcontrib><creatorcontrib>Hadfield, Michael G.</creatorcontrib><creatorcontrib>Jensen, Grant J.</creatorcontrib><creatorcontrib>Newman, Dianne K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shikuma, Nicholas J.</au><au>Pilhofer, Martin</au><au>Weiss, Gregor L.</au><au>Hadfield, Michael G.</au><au>Jensen, Grant J.</au><au>Newman, Dianne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-01-31</date><risdate>2014</risdate><volume>343</volume><issue>6170</issue><spage>529</spage><epage>533</epage><pages>529-533</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24407482</pmid><doi>10.1126/science.1246794</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-01, Vol.343 (6170), p.529-533
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4949041
source MEDLINE; American Association for the Advancement of Science; Jstor Complete Legacy
subjects Animals
Aquatic Organisms - growth & development
Aquatic Organisms - microbiology
Bacteria
Bacteriocins
Bacteriocins - genetics
Bacteriocins - metabolism
Bacteriophages
Bacteriophages - ultrastructure
Biofilms
Cell aggregates
Developmental biology
drilling
Fluorescence
fouling
Genes, Bacterial - physiology
Invertebrates
Larva - growth & development
Larva - microbiology
larvae
Larval development
Marine biology
Metamorphosis
Metamorphosis, Biological
Molecular Sequence Data
Mycobacterium avium complex
Open Reading Frames
Polychaeta - growth & development
Polychaeta - microbiology
Proteins
Pseudoalteromonas - genetics
Pseudoalteromonas - physiology
Pseudoalteromonas - virology
Pseudoalteromonas luteoviolacea
rocks
ships
tube worms
Viral Tail Proteins - genetics
Viral Tail Proteins - physiology
Worms
title Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20Tubeworm%20Metamorphosis%20Induced%20by%20Arrays%20of%20Bacterial%20Phage%20Tail%E2%80%93Like%20Structures&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shikuma,%20Nicholas%20J.&rft.date=2014-01-31&rft.volume=343&rft.issue=6170&rft.spage=529&rft.epage=533&rft.pages=529-533&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1246794&rft_dat=%3Cjstor_pubme%3E24742868%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492919346&rft_id=info:pmid/24407482&rft_jstor_id=24742868&rfr_iscdi=true