Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis

Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of extracellular vesicles 2016-01, Vol.5 (1), p.31295-n/a
Hauptverfasser: Hurwitz, Stephanie N., Conlon, Meghan M., Rider, Mark A., Brownstein, Naomi C., Meckes, David G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page 31295
container_title Journal of extracellular vesicles
container_volume 5
creator Hurwitz, Stephanie N.
Conlon, Meghan M.
Rider, Mark A.
Brownstein, Naomi C.
Meckes, David G.
description Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion.
doi_str_mv 10.3402/jev.v5.31295
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4947197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_edef521f3d7041808c3005fa35071abc</doaj_id><sourcerecordid>3092343982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6005-66c96ecb1b682b094a443c2913c4316923d7b52b9a6256a8caa29061940385f93</originalsourceid><addsrcrecordid>eNp9ks9v0zAUxyMEYtPYjTOKxIUDLf4d-4IE0wZDE1yAq_XiOK0rNy52ktH_Hqcp04bQfMlT8vHH7xu_oniJ0ZIyRN5t7Lgc-ZJioviT4pQghBcUVfLpvfqkOE9pg_JSDHOpnhcnpGIEK8VPC_sVurCD2DvjbQkd-H1yqUxr26SyHprGdavSdcmt1n3KRR_Kle1sxssmutHGVIa2tL_7CMZ6P3iI5WjTwVa7MLHZ96J41oJP9vz4PCt-XF1-v_i8uPn26friw83CCIT4QgijhDU1roUkdW4XGKOGKEwNo1goQpuq5qRWIAgXIA0AUUhgxRCVvFX0rLievU2Ajd5Ft4W41wGcPrwIcaWPUbVtbMsJbrMSMSyRNDS30ALlqMJQm-x6P7t2Q721jbFdzugfSB9-6dxar8KomWIVVlUWvDkKYvg12NTrrUvTT4LOhiHpfCiTQmIsMvr6H3QThpgvI2mKcmxGlSSPUQRJgigXeKLezpSJIaVo27uWMdLT0Og8NHrk-jA0GX91P-Yd_HdEMsBn4NZ5u39Upr9c_iQfrxAibNpXzftc14a4hdsQfaN72PsQ2widcTncf1v6A8HR4MM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082035612</pqid></control><display><type>article</type><title>Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis</title><source>Taylor &amp; Francis Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Co-Action Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hurwitz, Stephanie N. ; Conlon, Meghan M. ; Rider, Mark A. ; Brownstein, Naomi C. ; Meckes, David G.</creator><creatorcontrib>Hurwitz, Stephanie N. ; Conlon, Meghan M. ; Rider, Mark A. ; Brownstein, Naomi C. ; Meckes, David G.</creatorcontrib><description>Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion.</description><identifier>ISSN: 2001-3078</identifier><identifier>EISSN: 2001-3078</identifier><identifier>DOI: 10.3402/jev.v5.31295</identifier><identifier>PMID: 27421995</identifier><language>eng</language><publisher>Sweden: Taylor &amp; Francis</publisher><subject>Bioinformatics ; Biological activity ; Biomarkers ; Biosynthesis ; Cancer ; CD63 antigen ; Cell interactions ; Cells ; CRISPR ; Cytoskeleton ; endocytosis ; Exocytosis ; Extracellular vesicles ; Genes ; Genetic analysis ; genome engineering ; Guanosine triphosphatases ; Lipid metabolism ; Lipids ; Medical research ; Metastasis ; Nanoparticles ; oncosomes ; Original ; Physiology ; Plasma ; polyethylene glycol ; Population studies ; Proteins ; Secretion ; tetraspanin ; trafficking ; Transcriptomics</subject><ispartof>Journal of extracellular vesicles, 2016-01, Vol.5 (1), p.31295-n/a</ispartof><rights>2016 Stephanie N. Hurwitz et al. 2016</rights><rights>2016 Stephanie N. Hurwitz et al.</rights><rights>Copyright Taylor &amp; Francis Ltd. 2016</rights><rights>Copyright John Wiley &amp; Sons, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6005-66c96ecb1b682b094a443c2913c4316923d7b52b9a6256a8caa29061940385f93</citedby><cites>FETCH-LOGICAL-c6005-66c96ecb1b682b094a443c2913c4316923d7b52b9a6256a8caa29061940385f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,2096,4125,11541,27479,27901,27902,45550,45551,46027,46451,53766,53768,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27421995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurwitz, Stephanie N.</creatorcontrib><creatorcontrib>Conlon, Meghan M.</creatorcontrib><creatorcontrib>Rider, Mark A.</creatorcontrib><creatorcontrib>Brownstein, Naomi C.</creatorcontrib><creatorcontrib>Meckes, David G.</creatorcontrib><title>Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis</title><title>Journal of extracellular vesicles</title><addtitle>J Extracell Vesicles</addtitle><description>Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion.</description><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biomarkers</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>CD63 antigen</subject><subject>Cell interactions</subject><subject>Cells</subject><subject>CRISPR</subject><subject>Cytoskeleton</subject><subject>endocytosis</subject><subject>Exocytosis</subject><subject>Extracellular vesicles</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>genome engineering</subject><subject>Guanosine triphosphatases</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Medical research</subject><subject>Metastasis</subject><subject>Nanoparticles</subject><subject>oncosomes</subject><subject>Original</subject><subject>Physiology</subject><subject>Plasma</subject><subject>polyethylene glycol</subject><subject>Population studies</subject><subject>Proteins</subject><subject>Secretion</subject><subject>tetraspanin</subject><subject>trafficking</subject><subject>Transcriptomics</subject><issn>2001-3078</issn><issn>2001-3078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>24P</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9v0zAUxyMEYtPYjTOKxIUDLf4d-4IE0wZDE1yAq_XiOK0rNy52ktH_Hqcp04bQfMlT8vHH7xu_oniJ0ZIyRN5t7Lgc-ZJioviT4pQghBcUVfLpvfqkOE9pg_JSDHOpnhcnpGIEK8VPC_sVurCD2DvjbQkd-H1yqUxr26SyHprGdavSdcmt1n3KRR_Kle1sxssmutHGVIa2tL_7CMZ6P3iI5WjTwVa7MLHZ96J41oJP9vz4PCt-XF1-v_i8uPn26friw83CCIT4QgijhDU1roUkdW4XGKOGKEwNo1goQpuq5qRWIAgXIA0AUUhgxRCVvFX0rLievU2Ajd5Ft4W41wGcPrwIcaWPUbVtbMsJbrMSMSyRNDS30ALlqMJQm-x6P7t2Q721jbFdzugfSB9-6dxar8KomWIVVlUWvDkKYvg12NTrrUvTT4LOhiHpfCiTQmIsMvr6H3QThpgvI2mKcmxGlSSPUQRJgigXeKLezpSJIaVo27uWMdLT0Og8NHrk-jA0GX91P-Yd_HdEMsBn4NZ5u39Upr9c_iQfrxAibNpXzftc14a4hdsQfaN72PsQ2widcTncf1v6A8HR4MM</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Hurwitz, Stephanie N.</creator><creator>Conlon, Meghan M.</creator><creator>Rider, Mark A.</creator><creator>Brownstein, Naomi C.</creator><creator>Meckes, David G.</creator><general>Taylor &amp; Francis</general><general>John Wiley &amp; Sons, Inc</general><general>Co-Action Publishing</general><general>Wiley</general><scope>0YH</scope><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>201601</creationdate><title>Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis</title><author>Hurwitz, Stephanie N. ; Conlon, Meghan M. ; Rider, Mark A. ; Brownstein, Naomi C. ; Meckes, David G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6005-66c96ecb1b682b094a443c2913c4316923d7b52b9a6256a8caa29061940385f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biomarkers</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>CD63 antigen</topic><topic>Cell interactions</topic><topic>Cells</topic><topic>CRISPR</topic><topic>Cytoskeleton</topic><topic>endocytosis</topic><topic>Exocytosis</topic><topic>Extracellular vesicles</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>genome engineering</topic><topic>Guanosine triphosphatases</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Medical research</topic><topic>Metastasis</topic><topic>Nanoparticles</topic><topic>oncosomes</topic><topic>Original</topic><topic>Physiology</topic><topic>Plasma</topic><topic>polyethylene glycol</topic><topic>Population studies</topic><topic>Proteins</topic><topic>Secretion</topic><topic>tetraspanin</topic><topic>trafficking</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurwitz, Stephanie N.</creatorcontrib><creatorcontrib>Conlon, Meghan M.</creatorcontrib><creatorcontrib>Rider, Mark A.</creatorcontrib><creatorcontrib>Brownstein, Naomi C.</creatorcontrib><creatorcontrib>Meckes, David G.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of extracellular vesicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurwitz, Stephanie N.</au><au>Conlon, Meghan M.</au><au>Rider, Mark A.</au><au>Brownstein, Naomi C.</au><au>Meckes, David G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis</atitle><jtitle>Journal of extracellular vesicles</jtitle><addtitle>J Extracell Vesicles</addtitle><date>2016-01</date><risdate>2016</risdate><volume>5</volume><issue>1</issue><spage>31295</spage><epage>n/a</epage><pages>31295-n/a</pages><issn>2001-3078</issn><eissn>2001-3078</eissn><abstract>Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion.</abstract><cop>Sweden</cop><pub>Taylor &amp; Francis</pub><pmid>27421995</pmid><doi>10.3402/jev.v5.31295</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2001-3078
ispartof Journal of extracellular vesicles, 2016-01, Vol.5 (1), p.31295-n/a
issn 2001-3078
2001-3078
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4947197
source Taylor & Francis Open Access; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Co-Action Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Bioinformatics
Biological activity
Biomarkers
Biosynthesis
Cancer
CD63 antigen
Cell interactions
Cells
CRISPR
Cytoskeleton
endocytosis
Exocytosis
Extracellular vesicles
Genes
Genetic analysis
genome engineering
Guanosine triphosphatases
Lipid metabolism
Lipids
Medical research
Metastasis
Nanoparticles
oncosomes
Original
Physiology
Plasma
polyethylene glycol
Population studies
Proteins
Secretion
tetraspanin
trafficking
Transcriptomics
title Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20analysis%20sheds%20budding%20insights%20into%20genetic%20drivers%20of%20extracellular%20vesicle%20biogenesis&rft.jtitle=Journal%20of%20extracellular%20vesicles&rft.au=Hurwitz,%20Stephanie%20N.&rft.date=2016-01&rft.volume=5&rft.issue=1&rft.spage=31295&rft.epage=n/a&rft.pages=31295-n/a&rft.issn=2001-3078&rft.eissn=2001-3078&rft_id=info:doi/10.3402/jev.v5.31295&rft_dat=%3Cproquest_pubme%3E3092343982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082035612&rft_id=info:pmid/27421995&rft_doaj_id=oai_doaj_org_article_edef521f3d7041808c3005fa35071abc&rfr_iscdi=true