New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies
Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-07, Vol.291 (29), p.15057-15068 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15068 |
---|---|
container_issue | 29 |
container_start_page | 15057 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Liu, Yao 刘, 垚 Rodrigues, João P.G.L.M. Bonvin, Alexandre M.J.J. Zaal, Esther A. Berkers, Celia R. Heger, Michal Gawarecka, Katarzyna Swiezewska, Ewa Breukink, Eefjan Egmond, Maarten R. |
description | Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide. |
doi_str_mv | 10.1074/jbc.M116.717884 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4946923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820412530</els_id><sourcerecordid>27226570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</originalsourceid><addsrcrecordid>eNp1kLlOAzEQhi0EgnDUdMgvsMHXHm6QIJyCQAFIUFle72xiyHoj24DC02MUQFDgZgr_883Mh9AuJUNKSrH_VJvhmNJiWNKyqsQKGlBS8Yzn9GEVDQhhNJMsrzbQZghPJD0h6TraYCVjRV6SATLX8IYvXLCTacTWxR7HKeCRjnq2iNbgMZipdjZ0uG_xkTYRvNUzPPb6Ebe-7_CJe190gC-tg5QPWLsGH_fm2boJvo0vjYWwjdZaPQuw81W30P3pyd3oPLu6ObsYHV5lRggeM0q5TqdAY3QJtciJzDmr08o1mFwKUpcSQLeSca05EzkldUMLXptCljmrJN9CB0vu_KXuEgZc9Hqm5t522i9Ur636--PsVE36VyWkKBI2AfaXAOP7EDy0P72UqE_fKvlWn77V0nfq2Ps98if_LTgF5DIA6fBXC14FY8EZaKwHE1XT23_hH4PokJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</title><source>MEDLINE</source><source>PubMed</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Liu, Yao ; 刘, 垚 ; Rodrigues, João P.G.L.M. ; Bonvin, Alexandre M.J.J. ; Zaal, Esther A. ; Berkers, Celia R. ; Heger, Michal ; Gawarecka, Katarzyna ; Swiezewska, Ewa ; Breukink, Eefjan ; Egmond, Maarten R.</creator><creatorcontrib>Liu, Yao ; 刘, 垚 ; Rodrigues, João P.G.L.M. ; Bonvin, Alexandre M.J.J. ; Zaal, Esther A. ; Berkers, Celia R. ; Heger, Michal ; Gawarecka, Katarzyna ; Swiezewska, Ewa ; Breukink, Eefjan ; Egmond, Maarten R.</creatorcontrib><description>Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.717884</identifier><identifier>PMID: 27226570</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Catalysis ; docking ; enzyme ; Enzymology ; HADDOCK ; helices ; Kinetics ; mechanism ; Models, Molecular ; Monosaccharides - metabolism ; MraY ; Mutagenesis, Site-Directed ; Oligopeptides - metabolism ; phosphate ; Polyisoprenyl Phosphates - metabolism ; Protein Conformation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; structural model ; structure-function ; Substrate Specificity ; Transferases - chemistry ; Transferases - genetics ; Transferases - metabolism ; Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives ; Uridine Diphosphate N-Acetylmuramic Acid - metabolism ; Uridine Monophosphate - metabolism</subject><ispartof>The Journal of biological chemistry, 2016-07, Vol.291 (29), p.15057-15068</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</citedby><cites>FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946923/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946923/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27226570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>刘, 垚</creatorcontrib><creatorcontrib>Rodrigues, João P.G.L.M.</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><creatorcontrib>Zaal, Esther A.</creatorcontrib><creatorcontrib>Berkers, Celia R.</creatorcontrib><creatorcontrib>Heger, Michal</creatorcontrib><creatorcontrib>Gawarecka, Katarzyna</creatorcontrib><creatorcontrib>Swiezewska, Ewa</creatorcontrib><creatorcontrib>Breukink, Eefjan</creatorcontrib><creatorcontrib>Egmond, Maarten R.</creatorcontrib><title>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.</description><subject>Amino Acid Substitution</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Catalysis</subject><subject>docking</subject><subject>enzyme</subject><subject>Enzymology</subject><subject>HADDOCK</subject><subject>helices</subject><subject>Kinetics</subject><subject>mechanism</subject><subject>Models, Molecular</subject><subject>Monosaccharides - metabolism</subject><subject>MraY</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oligopeptides - metabolism</subject><subject>phosphate</subject><subject>Polyisoprenyl Phosphates - metabolism</subject><subject>Protein Conformation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>structural model</subject><subject>structure-function</subject><subject>Substrate Specificity</subject><subject>Transferases - chemistry</subject><subject>Transferases - genetics</subject><subject>Transferases - metabolism</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><subject>Uridine Monophosphate - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLlOAzEQhi0EgnDUdMgvsMHXHm6QIJyCQAFIUFle72xiyHoj24DC02MUQFDgZgr_883Mh9AuJUNKSrH_VJvhmNJiWNKyqsQKGlBS8Yzn9GEVDQhhNJMsrzbQZghPJD0h6TraYCVjRV6SATLX8IYvXLCTacTWxR7HKeCRjnq2iNbgMZipdjZ0uG_xkTYRvNUzPPb6Ebe-7_CJe190gC-tg5QPWLsGH_fm2boJvo0vjYWwjdZaPQuw81W30P3pyd3oPLu6ObsYHV5lRggeM0q5TqdAY3QJtciJzDmr08o1mFwKUpcSQLeSca05EzkldUMLXptCljmrJN9CB0vu_KXuEgZc9Hqm5t522i9Ur636--PsVE36VyWkKBI2AfaXAOP7EDy0P72UqE_fKvlWn77V0nfq2Ps98if_LTgF5DIA6fBXC14FY8EZaKwHE1XT23_hH4PokJo</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Liu, Yao</creator><creator>刘, 垚</creator><creator>Rodrigues, João P.G.L.M.</creator><creator>Bonvin, Alexandre M.J.J.</creator><creator>Zaal, Esther A.</creator><creator>Berkers, Celia R.</creator><creator>Heger, Michal</creator><creator>Gawarecka, Katarzyna</creator><creator>Swiezewska, Ewa</creator><creator>Breukink, Eefjan</creator><creator>Egmond, Maarten R.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160715</creationdate><title>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</title><author>Liu, Yao ; 刘, 垚 ; Rodrigues, João P.G.L.M. ; Bonvin, Alexandre M.J.J. ; Zaal, Esther A. ; Berkers, Celia R. ; Heger, Michal ; Gawarecka, Katarzyna ; Swiezewska, Ewa ; Breukink, Eefjan ; Egmond, Maarten R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Substitution</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Catalysis</topic><topic>docking</topic><topic>enzyme</topic><topic>Enzymology</topic><topic>HADDOCK</topic><topic>helices</topic><topic>Kinetics</topic><topic>mechanism</topic><topic>Models, Molecular</topic><topic>Monosaccharides - metabolism</topic><topic>MraY</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oligopeptides - metabolism</topic><topic>phosphate</topic><topic>Polyisoprenyl Phosphates - metabolism</topic><topic>Protein Conformation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>structural model</topic><topic>structure-function</topic><topic>Substrate Specificity</topic><topic>Transferases - chemistry</topic><topic>Transferases - genetics</topic><topic>Transferases - metabolism</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</topic><topic>Uridine Monophosphate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>刘, 垚</creatorcontrib><creatorcontrib>Rodrigues, João P.G.L.M.</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><creatorcontrib>Zaal, Esther A.</creatorcontrib><creatorcontrib>Berkers, Celia R.</creatorcontrib><creatorcontrib>Heger, Michal</creatorcontrib><creatorcontrib>Gawarecka, Katarzyna</creatorcontrib><creatorcontrib>Swiezewska, Ewa</creatorcontrib><creatorcontrib>Breukink, Eefjan</creatorcontrib><creatorcontrib>Egmond, Maarten R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yao</au><au>刘, 垚</au><au>Rodrigues, João P.G.L.M.</au><au>Bonvin, Alexandre M.J.J.</au><au>Zaal, Esther A.</au><au>Berkers, Celia R.</au><au>Heger, Michal</au><au>Gawarecka, Katarzyna</au><au>Swiezewska, Ewa</au><au>Breukink, Eefjan</au><au>Egmond, Maarten R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-07-15</date><risdate>2016</risdate><volume>291</volume><issue>29</issue><spage>15057</spage><epage>15068</epage><pages>15057-15068</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27226570</pmid><doi>10.1074/jbc.M116.717884</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-07, Vol.291 (29), p.15057-15068 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4946923 |
source | MEDLINE; PubMed; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Amino Acid Substitution Bacillus subtilis - enzymology Bacillus subtilis - genetics Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Catalysis docking enzyme Enzymology HADDOCK helices Kinetics mechanism Models, Molecular Monosaccharides - metabolism MraY Mutagenesis, Site-Directed Oligopeptides - metabolism phosphate Polyisoprenyl Phosphates - metabolism Protein Conformation Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism structural model structure-function Substrate Specificity Transferases - chemistry Transferases - genetics Transferases - metabolism Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives Uridine Diphosphate N-Acetylmuramic Acid - metabolism Uridine Monophosphate - metabolism |
title | New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insight%20into%20the%20Catalytic%20Mechanism%20of%20Bacterial%20MraY%20from%20Enzyme%20Kinetics%20and%20Docking%20Studies&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Liu,%20Yao&rft.date=2016-07-15&rft.volume=291&rft.issue=29&rft.spage=15057&rft.epage=15068&rft.pages=15057-15068&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.717884&rft_dat=%3Cpubmed_cross%3E27226570%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27226570&rft_els_id=S0021925820412530&rfr_iscdi=true |