New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies

Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-07, Vol.291 (29), p.15057-15068
Hauptverfasser: Liu, Yao, 刘, 垚, Rodrigues, João P.G.L.M., Bonvin, Alexandre M.J.J., Zaal, Esther A., Berkers, Celia R., Heger, Michal, Gawarecka, Katarzyna, Swiezewska, Ewa, Breukink, Eefjan, Egmond, Maarten R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15068
container_issue 29
container_start_page 15057
container_title The Journal of biological chemistry
container_volume 291
creator Liu, Yao
刘, 垚
Rodrigues, João P.G.L.M.
Bonvin, Alexandre M.J.J.
Zaal, Esther A.
Berkers, Celia R.
Heger, Michal
Gawarecka, Katarzyna
Swiezewska, Ewa
Breukink, Eefjan
Egmond, Maarten R.
description Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.
doi_str_mv 10.1074/jbc.M116.717884
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4946923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820412530</els_id><sourcerecordid>27226570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</originalsourceid><addsrcrecordid>eNp1kLlOAzEQhi0EgnDUdMgvsMHXHm6QIJyCQAFIUFle72xiyHoj24DC02MUQFDgZgr_883Mh9AuJUNKSrH_VJvhmNJiWNKyqsQKGlBS8Yzn9GEVDQhhNJMsrzbQZghPJD0h6TraYCVjRV6SATLX8IYvXLCTacTWxR7HKeCRjnq2iNbgMZipdjZ0uG_xkTYRvNUzPPb6Ebe-7_CJe190gC-tg5QPWLsGH_fm2boJvo0vjYWwjdZaPQuw81W30P3pyd3oPLu6ObsYHV5lRggeM0q5TqdAY3QJtciJzDmr08o1mFwKUpcSQLeSca05EzkldUMLXptCljmrJN9CB0vu_KXuEgZc9Hqm5t522i9Ur636--PsVE36VyWkKBI2AfaXAOP7EDy0P72UqE_fKvlWn77V0nfq2Ps98if_LTgF5DIA6fBXC14FY8EZaKwHE1XT23_hH4PokJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</title><source>MEDLINE</source><source>PubMed</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Liu, Yao ; 刘, 垚 ; Rodrigues, João P.G.L.M. ; Bonvin, Alexandre M.J.J. ; Zaal, Esther A. ; Berkers, Celia R. ; Heger, Michal ; Gawarecka, Katarzyna ; Swiezewska, Ewa ; Breukink, Eefjan ; Egmond, Maarten R.</creator><creatorcontrib>Liu, Yao ; 刘, 垚 ; Rodrigues, João P.G.L.M. ; Bonvin, Alexandre M.J.J. ; Zaal, Esther A. ; Berkers, Celia R. ; Heger, Michal ; Gawarecka, Katarzyna ; Swiezewska, Ewa ; Breukink, Eefjan ; Egmond, Maarten R.</creatorcontrib><description>Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.717884</identifier><identifier>PMID: 27226570</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Catalysis ; docking ; enzyme ; Enzymology ; HADDOCK ; helices ; Kinetics ; mechanism ; Models, Molecular ; Monosaccharides - metabolism ; MraY ; Mutagenesis, Site-Directed ; Oligopeptides - metabolism ; phosphate ; Polyisoprenyl Phosphates - metabolism ; Protein Conformation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; structural model ; structure-function ; Substrate Specificity ; Transferases - chemistry ; Transferases - genetics ; Transferases - metabolism ; Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives ; Uridine Diphosphate N-Acetylmuramic Acid - metabolism ; Uridine Monophosphate - metabolism</subject><ispartof>The Journal of biological chemistry, 2016-07, Vol.291 (29), p.15057-15068</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</citedby><cites>FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946923/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946923/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27226570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>刘, 垚</creatorcontrib><creatorcontrib>Rodrigues, João P.G.L.M.</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><creatorcontrib>Zaal, Esther A.</creatorcontrib><creatorcontrib>Berkers, Celia R.</creatorcontrib><creatorcontrib>Heger, Michal</creatorcontrib><creatorcontrib>Gawarecka, Katarzyna</creatorcontrib><creatorcontrib>Swiezewska, Ewa</creatorcontrib><creatorcontrib>Breukink, Eefjan</creatorcontrib><creatorcontrib>Egmond, Maarten R.</creatorcontrib><title>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.</description><subject>Amino Acid Substitution</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Catalysis</subject><subject>docking</subject><subject>enzyme</subject><subject>Enzymology</subject><subject>HADDOCK</subject><subject>helices</subject><subject>Kinetics</subject><subject>mechanism</subject><subject>Models, Molecular</subject><subject>Monosaccharides - metabolism</subject><subject>MraY</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oligopeptides - metabolism</subject><subject>phosphate</subject><subject>Polyisoprenyl Phosphates - metabolism</subject><subject>Protein Conformation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>structural model</subject><subject>structure-function</subject><subject>Substrate Specificity</subject><subject>Transferases - chemistry</subject><subject>Transferases - genetics</subject><subject>Transferases - metabolism</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><subject>Uridine Monophosphate - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLlOAzEQhi0EgnDUdMgvsMHXHm6QIJyCQAFIUFle72xiyHoj24DC02MUQFDgZgr_883Mh9AuJUNKSrH_VJvhmNJiWNKyqsQKGlBS8Yzn9GEVDQhhNJMsrzbQZghPJD0h6TraYCVjRV6SATLX8IYvXLCTacTWxR7HKeCRjnq2iNbgMZipdjZ0uG_xkTYRvNUzPPb6Ebe-7_CJe190gC-tg5QPWLsGH_fm2boJvo0vjYWwjdZaPQuw81W30P3pyd3oPLu6ObsYHV5lRggeM0q5TqdAY3QJtciJzDmr08o1mFwKUpcSQLeSca05EzkldUMLXptCljmrJN9CB0vu_KXuEgZc9Hqm5t522i9Ur636--PsVE36VyWkKBI2AfaXAOP7EDy0P72UqE_fKvlWn77V0nfq2Ps98if_LTgF5DIA6fBXC14FY8EZaKwHE1XT23_hH4PokJo</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Liu, Yao</creator><creator>刘, 垚</creator><creator>Rodrigues, João P.G.L.M.</creator><creator>Bonvin, Alexandre M.J.J.</creator><creator>Zaal, Esther A.</creator><creator>Berkers, Celia R.</creator><creator>Heger, Michal</creator><creator>Gawarecka, Katarzyna</creator><creator>Swiezewska, Ewa</creator><creator>Breukink, Eefjan</creator><creator>Egmond, Maarten R.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160715</creationdate><title>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</title><author>Liu, Yao ; 刘, 垚 ; Rodrigues, João P.G.L.M. ; Bonvin, Alexandre M.J.J. ; Zaal, Esther A. ; Berkers, Celia R. ; Heger, Michal ; Gawarecka, Katarzyna ; Swiezewska, Ewa ; Breukink, Eefjan ; Egmond, Maarten R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-113a116edca7eb4509532b004bec5940b79eeaf923aa324510bd163bc69752893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Substitution</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Catalysis</topic><topic>docking</topic><topic>enzyme</topic><topic>Enzymology</topic><topic>HADDOCK</topic><topic>helices</topic><topic>Kinetics</topic><topic>mechanism</topic><topic>Models, Molecular</topic><topic>Monosaccharides - metabolism</topic><topic>MraY</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oligopeptides - metabolism</topic><topic>phosphate</topic><topic>Polyisoprenyl Phosphates - metabolism</topic><topic>Protein Conformation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>structural model</topic><topic>structure-function</topic><topic>Substrate Specificity</topic><topic>Transferases - chemistry</topic><topic>Transferases - genetics</topic><topic>Transferases - metabolism</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</topic><topic>Uridine Monophosphate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>刘, 垚</creatorcontrib><creatorcontrib>Rodrigues, João P.G.L.M.</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><creatorcontrib>Zaal, Esther A.</creatorcontrib><creatorcontrib>Berkers, Celia R.</creatorcontrib><creatorcontrib>Heger, Michal</creatorcontrib><creatorcontrib>Gawarecka, Katarzyna</creatorcontrib><creatorcontrib>Swiezewska, Ewa</creatorcontrib><creatorcontrib>Breukink, Eefjan</creatorcontrib><creatorcontrib>Egmond, Maarten R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yao</au><au>刘, 垚</au><au>Rodrigues, João P.G.L.M.</au><au>Bonvin, Alexandre M.J.J.</au><au>Zaal, Esther A.</au><au>Berkers, Celia R.</au><au>Heger, Michal</au><au>Gawarecka, Katarzyna</au><au>Swiezewska, Ewa</au><au>Breukink, Eefjan</au><au>Egmond, Maarten R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-07-15</date><risdate>2016</risdate><volume>291</volume><issue>29</issue><spage>15057</spage><epage>15068</epage><pages>15057-15068</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27226570</pmid><doi>10.1074/jbc.M116.717884</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-07, Vol.291 (29), p.15057-15068
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4946923
source MEDLINE; PubMed; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Amino Acid Substitution
Bacillus subtilis - enzymology
Bacillus subtilis - genetics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Catalysis
docking
enzyme
Enzymology
HADDOCK
helices
Kinetics
mechanism
Models, Molecular
Monosaccharides - metabolism
MraY
Mutagenesis, Site-Directed
Oligopeptides - metabolism
phosphate
Polyisoprenyl Phosphates - metabolism
Protein Conformation
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
structural model
structure-function
Substrate Specificity
Transferases - chemistry
Transferases - genetics
Transferases - metabolism
Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives
Uridine Diphosphate N-Acetylmuramic Acid - metabolism
Uridine Monophosphate - metabolism
title New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insight%20into%20the%20Catalytic%20Mechanism%20of%20Bacterial%20MraY%20from%20Enzyme%20Kinetics%20and%20Docking%20Studies&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Liu,%20Yao&rft.date=2016-07-15&rft.volume=291&rft.issue=29&rft.spage=15057&rft.epage=15068&rft.pages=15057-15068&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.717884&rft_dat=%3Cpubmed_cross%3E27226570%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27226570&rft_els_id=S0021925820412530&rfr_iscdi=true