Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1
Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incom...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2016-07, Vol.36 (28), p.7464-7475 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7475 |
---|---|
container_issue | 28 |
container_start_page | 7464 |
container_title | The Journal of neuroscience |
container_volume | 36 |
creator | Park, Kellie A Ribic, Adema Laage Gaupp, Fabian M Coman, Daniel Huang, Yuegao Dulla, Chris G Hyder, Fahmeed Biederer, Thomas |
description | Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability.
This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network ex |
doi_str_mv | 10.1523/jneurosci.0189-16.2016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4945666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808705668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-459bd83bf903eeaa4506f1ad792250f8af369381b43d293e79747a589d58c7bf3</originalsourceid><addsrcrecordid>eNpVkc1u1DAURi0EokPhFSov2WSw4_8N0ihM6aBCpZauLcd2Oq4SOzhOYd6eDC0VrO7ift-5VzoAnGG0xqwmH-6jn3OabFgjLFWF-bpGmL8Aq2Wrqpoi_BKsUC1QxamgJ-DNNN0jhATC4jU4qQXFBDO-AsP2lw3FlJQP8OYQzViChZ9yePDQRAfPvXddyj9NdnAX96ENJaQIQ4Rl7-FFGMdkzTCaHjYbApuQ7RwK3GQPr_3d3JviHWz_kJvNV4jfgled6Sf_7mmegtvz7ffmorq8-rxrNpeVZZiUijLVOknaTiHivTGUId5h44Sqa4Y6aTrCFZG4pcTVinihBBWGSeWYtKLtyCn4-Mgd53bwzvpYsun1mMNg8kEnE_T_mxj2-i49aKoo45wvgPdPgJx-zH4qegiT9X1vok_zpLFEUqAlKpcof4zaxceUffd8BiN9dKW_fNveXl_dNDt9dKUx10dXS_Hs3yefa3_lkN-995Ku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808705668</pqid></control><display><type>article</type><title>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Park, Kellie A ; Ribic, Adema ; Laage Gaupp, Fabian M ; Coman, Daniel ; Huang, Yuegao ; Dulla, Chris G ; Hyder, Fahmeed ; Biederer, Thomas</creator><creatorcontrib>Park, Kellie A ; Ribic, Adema ; Laage Gaupp, Fabian M ; Coman, Daniel ; Huang, Yuegao ; Dulla, Chris G ; Hyder, Fahmeed ; Biederer, Thomas</creatorcontrib><description>Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability.
This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0189-16.2016</identifier><identifier>PMID: 27413156</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; CA3 Region, Hippocampal - cytology ; CA3 Region, Hippocampal - diagnostic imaging ; Cell Adhesion Molecule-1 ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Conditioning, Classical - drug effects ; Fear - drug effects ; Female ; GABA Antagonists - pharmacology ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Immunoglobulins - genetics ; Immunoglobulins - metabolism ; In Vitro Techniques ; Male ; Memory Disorders - diagnostic imaging ; Memory Disorders - genetics ; Memory Disorders - pathology ; Memory Disorders - physiopathology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neural Inhibition - physiology ; Neural Pathways - drug effects ; Neural Pathways - physiology ; Parvalbumins - metabolism ; Pyridazines - pharmacology ; Synapses - physiology ; Synaptic Potentials - drug effects ; Synaptic Potentials - genetics ; Time Factors</subject><ispartof>The Journal of neuroscience, 2016-07, Vol.36 (28), p.7464-7475</ispartof><rights>Copyright © 2016 the authors 0270-6474/16/367465-12$15.00/0.</rights><rights>Copyright © 2016 the authors 0270-6474/16/367465-12$15.00/0 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-459bd83bf903eeaa4506f1ad792250f8af369381b43d293e79747a589d58c7bf3</citedby><orcidid>0000-0003-0912-1514 ; 0000-0002-6560-6535 ; 0000-0001-6653-8645 ; 0000-0002-8719-6741 ; 0000-0002-6289-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945666/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945666/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27413156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kellie A</creatorcontrib><creatorcontrib>Ribic, Adema</creatorcontrib><creatorcontrib>Laage Gaupp, Fabian M</creatorcontrib><creatorcontrib>Coman, Daniel</creatorcontrib><creatorcontrib>Huang, Yuegao</creatorcontrib><creatorcontrib>Dulla, Chris G</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Biederer, Thomas</creatorcontrib><title>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability.
This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.</description><subject>Animals</subject><subject>CA3 Region, Hippocampal - cytology</subject><subject>CA3 Region, Hippocampal - diagnostic imaging</subject><subject>Cell Adhesion Molecule-1</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Conditioning, Classical - drug effects</subject><subject>Fear - drug effects</subject><subject>Female</subject><subject>GABA Antagonists - pharmacology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Immunoglobulins - genetics</subject><subject>Immunoglobulins - metabolism</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Memory Disorders - diagnostic imaging</subject><subject>Memory Disorders - genetics</subject><subject>Memory Disorders - pathology</subject><subject>Memory Disorders - physiopathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - drug effects</subject><subject>Neural Pathways - physiology</subject><subject>Parvalbumins - metabolism</subject><subject>Pyridazines - pharmacology</subject><subject>Synapses - physiology</subject><subject>Synaptic Potentials - drug effects</subject><subject>Synaptic Potentials - genetics</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAURi0EokPhFSov2WSw4_8N0ihM6aBCpZauLcd2Oq4SOzhOYd6eDC0VrO7ift-5VzoAnGG0xqwmH-6jn3OabFgjLFWF-bpGmL8Aq2Wrqpoi_BKsUC1QxamgJ-DNNN0jhATC4jU4qQXFBDO-AsP2lw3FlJQP8OYQzViChZ9yePDQRAfPvXddyj9NdnAX96ENJaQIQ4Rl7-FFGMdkzTCaHjYbApuQ7RwK3GQPr_3d3JviHWz_kJvNV4jfgled6Sf_7mmegtvz7ffmorq8-rxrNpeVZZiUijLVOknaTiHivTGUId5h44Sqa4Y6aTrCFZG4pcTVinihBBWGSeWYtKLtyCn4-Mgd53bwzvpYsun1mMNg8kEnE_T_mxj2-i49aKoo45wvgPdPgJx-zH4qegiT9X1vok_zpLFEUqAlKpcof4zaxceUffd8BiN9dKW_fNveXl_dNDt9dKUx10dXS_Hs3yefa3_lkN-995Ku</recordid><startdate>20160713</startdate><enddate>20160713</enddate><creator>Park, Kellie A</creator><creator>Ribic, Adema</creator><creator>Laage Gaupp, Fabian M</creator><creator>Coman, Daniel</creator><creator>Huang, Yuegao</creator><creator>Dulla, Chris G</creator><creator>Hyder, Fahmeed</creator><creator>Biederer, Thomas</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0912-1514</orcidid><orcidid>https://orcid.org/0000-0002-6560-6535</orcidid><orcidid>https://orcid.org/0000-0001-6653-8645</orcidid><orcidid>https://orcid.org/0000-0002-8719-6741</orcidid><orcidid>https://orcid.org/0000-0002-6289-0817</orcidid></search><sort><creationdate>20160713</creationdate><title>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</title><author>Park, Kellie A ; Ribic, Adema ; Laage Gaupp, Fabian M ; Coman, Daniel ; Huang, Yuegao ; Dulla, Chris G ; Hyder, Fahmeed ; Biederer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-459bd83bf903eeaa4506f1ad792250f8af369381b43d293e79747a589d58c7bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>CA3 Region, Hippocampal - cytology</topic><topic>CA3 Region, Hippocampal - diagnostic imaging</topic><topic>Cell Adhesion Molecule-1</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Conditioning, Classical - drug effects</topic><topic>Fear - drug effects</topic><topic>Female</topic><topic>GABA Antagonists - pharmacology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Immunoglobulins - genetics</topic><topic>Immunoglobulins - metabolism</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Memory Disorders - diagnostic imaging</topic><topic>Memory Disorders - genetics</topic><topic>Memory Disorders - pathology</topic><topic>Memory Disorders - physiopathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - drug effects</topic><topic>Neural Pathways - physiology</topic><topic>Parvalbumins - metabolism</topic><topic>Pyridazines - pharmacology</topic><topic>Synapses - physiology</topic><topic>Synaptic Potentials - drug effects</topic><topic>Synaptic Potentials - genetics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kellie A</creatorcontrib><creatorcontrib>Ribic, Adema</creatorcontrib><creatorcontrib>Laage Gaupp, Fabian M</creatorcontrib><creatorcontrib>Coman, Daniel</creatorcontrib><creatorcontrib>Huang, Yuegao</creatorcontrib><creatorcontrib>Dulla, Chris G</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Biederer, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kellie A</au><au>Ribic, Adema</au><au>Laage Gaupp, Fabian M</au><au>Coman, Daniel</au><au>Huang, Yuegao</au><au>Dulla, Chris G</au><au>Hyder, Fahmeed</au><au>Biederer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2016-07-13</date><risdate>2016</risdate><volume>36</volume><issue>28</issue><spage>7464</spage><epage>7475</epage><pages>7464-7475</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability.
This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>27413156</pmid><doi>10.1523/jneurosci.0189-16.2016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0912-1514</orcidid><orcidid>https://orcid.org/0000-0002-6560-6535</orcidid><orcidid>https://orcid.org/0000-0001-6653-8645</orcidid><orcidid>https://orcid.org/0000-0002-8719-6741</orcidid><orcidid>https://orcid.org/0000-0002-6289-0817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2016-07, Vol.36 (28), p.7464-7475 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4945666 |
source | PubMed (Medline); MEDLINE; EZB Electronic Journals Library |
subjects | Animals CA3 Region, Hippocampal - cytology CA3 Region, Hippocampal - diagnostic imaging Cell Adhesion Molecule-1 Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Conditioning, Classical - drug effects Fear - drug effects Female GABA Antagonists - pharmacology Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Immunoglobulins - genetics Immunoglobulins - metabolism In Vitro Techniques Male Memory Disorders - diagnostic imaging Memory Disorders - genetics Memory Disorders - pathology Memory Disorders - physiopathology Mice Mice, Inbred C57BL Mice, Knockout Neural Inhibition - physiology Neural Pathways - drug effects Neural Pathways - physiology Parvalbumins - metabolism Pyridazines - pharmacology Synapses - physiology Synaptic Potentials - drug effects Synaptic Potentials - genetics Time Factors |
title | Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitatory%20Synaptic%20Drive%20and%20Feedforward%20Inhibition%20in%20the%20Hippocampal%20CA3%20Circuit%20Are%20Regulated%20by%20SynCAM%201&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Park,%20Kellie%20A&rft.date=2016-07-13&rft.volume=36&rft.issue=28&rft.spage=7464&rft.epage=7475&rft.pages=7464-7475&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0189-16.2016&rft_dat=%3Cproquest_pubme%3E1808705668%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808705668&rft_id=info:pmid/27413156&rfr_iscdi=true |