Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1

Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2016-07, Vol.36 (28), p.7464-7475
Hauptverfasser: Park, Kellie A, Ribic, Adema, Laage Gaupp, Fabian M, Coman, Daniel, Huang, Yuegao, Dulla, Chris G, Hyder, Fahmeed, Biederer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7475
container_issue 28
container_start_page 7464
container_title The Journal of neuroscience
container_volume 36
creator Park, Kellie A
Ribic, Adema
Laage Gaupp, Fabian M
Coman, Daniel
Huang, Yuegao
Dulla, Chris G
Hyder, Fahmeed
Biederer, Thomas
description Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network ex
doi_str_mv 10.1523/jneurosci.0189-16.2016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4945666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808705668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-459bd83bf903eeaa4506f1ad792250f8af369381b43d293e79747a589d58c7bf3</originalsourceid><addsrcrecordid>eNpVkc1u1DAURi0EokPhFSov2WSw4_8N0ihM6aBCpZauLcd2Oq4SOzhOYd6eDC0VrO7ift-5VzoAnGG0xqwmH-6jn3OabFgjLFWF-bpGmL8Aq2Wrqpoi_BKsUC1QxamgJ-DNNN0jhATC4jU4qQXFBDO-AsP2lw3FlJQP8OYQzViChZ9yePDQRAfPvXddyj9NdnAX96ENJaQIQ4Rl7-FFGMdkzTCaHjYbApuQ7RwK3GQPr_3d3JviHWz_kJvNV4jfgled6Sf_7mmegtvz7ffmorq8-rxrNpeVZZiUijLVOknaTiHivTGUId5h44Sqa4Y6aTrCFZG4pcTVinihBBWGSeWYtKLtyCn4-Mgd53bwzvpYsun1mMNg8kEnE_T_mxj2-i49aKoo45wvgPdPgJx-zH4qegiT9X1vok_zpLFEUqAlKpcof4zaxceUffd8BiN9dKW_fNveXl_dNDt9dKUx10dXS_Hs3yefa3_lkN-995Ku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808705668</pqid></control><display><type>article</type><title>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Park, Kellie A ; Ribic, Adema ; Laage Gaupp, Fabian M ; Coman, Daniel ; Huang, Yuegao ; Dulla, Chris G ; Hyder, Fahmeed ; Biederer, Thomas</creator><creatorcontrib>Park, Kellie A ; Ribic, Adema ; Laage Gaupp, Fabian M ; Coman, Daniel ; Huang, Yuegao ; Dulla, Chris G ; Hyder, Fahmeed ; Biederer, Thomas</creatorcontrib><description>Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0189-16.2016</identifier><identifier>PMID: 27413156</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; CA3 Region, Hippocampal - cytology ; CA3 Region, Hippocampal - diagnostic imaging ; Cell Adhesion Molecule-1 ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Conditioning, Classical - drug effects ; Fear - drug effects ; Female ; GABA Antagonists - pharmacology ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Immunoglobulins - genetics ; Immunoglobulins - metabolism ; In Vitro Techniques ; Male ; Memory Disorders - diagnostic imaging ; Memory Disorders - genetics ; Memory Disorders - pathology ; Memory Disorders - physiopathology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neural Inhibition - physiology ; Neural Pathways - drug effects ; Neural Pathways - physiology ; Parvalbumins - metabolism ; Pyridazines - pharmacology ; Synapses - physiology ; Synaptic Potentials - drug effects ; Synaptic Potentials - genetics ; Time Factors</subject><ispartof>The Journal of neuroscience, 2016-07, Vol.36 (28), p.7464-7475</ispartof><rights>Copyright © 2016 the authors 0270-6474/16/367465-12$15.00/0.</rights><rights>Copyright © 2016 the authors 0270-6474/16/367465-12$15.00/0 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-459bd83bf903eeaa4506f1ad792250f8af369381b43d293e79747a589d58c7bf3</citedby><orcidid>0000-0003-0912-1514 ; 0000-0002-6560-6535 ; 0000-0001-6653-8645 ; 0000-0002-8719-6741 ; 0000-0002-6289-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945666/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945666/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27413156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kellie A</creatorcontrib><creatorcontrib>Ribic, Adema</creatorcontrib><creatorcontrib>Laage Gaupp, Fabian M</creatorcontrib><creatorcontrib>Coman, Daniel</creatorcontrib><creatorcontrib>Huang, Yuegao</creatorcontrib><creatorcontrib>Dulla, Chris G</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Biederer, Thomas</creatorcontrib><title>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.</description><subject>Animals</subject><subject>CA3 Region, Hippocampal - cytology</subject><subject>CA3 Region, Hippocampal - diagnostic imaging</subject><subject>Cell Adhesion Molecule-1</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Conditioning, Classical - drug effects</subject><subject>Fear - drug effects</subject><subject>Female</subject><subject>GABA Antagonists - pharmacology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Immunoglobulins - genetics</subject><subject>Immunoglobulins - metabolism</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Memory Disorders - diagnostic imaging</subject><subject>Memory Disorders - genetics</subject><subject>Memory Disorders - pathology</subject><subject>Memory Disorders - physiopathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - drug effects</subject><subject>Neural Pathways - physiology</subject><subject>Parvalbumins - metabolism</subject><subject>Pyridazines - pharmacology</subject><subject>Synapses - physiology</subject><subject>Synaptic Potentials - drug effects</subject><subject>Synaptic Potentials - genetics</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAURi0EokPhFSov2WSw4_8N0ihM6aBCpZauLcd2Oq4SOzhOYd6eDC0VrO7ift-5VzoAnGG0xqwmH-6jn3OabFgjLFWF-bpGmL8Aq2Wrqpoi_BKsUC1QxamgJ-DNNN0jhATC4jU4qQXFBDO-AsP2lw3FlJQP8OYQzViChZ9yePDQRAfPvXddyj9NdnAX96ENJaQIQ4Rl7-FFGMdkzTCaHjYbApuQ7RwK3GQPr_3d3JviHWz_kJvNV4jfgled6Sf_7mmegtvz7ffmorq8-rxrNpeVZZiUijLVOknaTiHivTGUId5h44Sqa4Y6aTrCFZG4pcTVinihBBWGSeWYtKLtyCn4-Mgd53bwzvpYsun1mMNg8kEnE_T_mxj2-i49aKoo45wvgPdPgJx-zH4qegiT9X1vok_zpLFEUqAlKpcof4zaxceUffd8BiN9dKW_fNveXl_dNDt9dKUx10dXS_Hs3yefa3_lkN-995Ku</recordid><startdate>20160713</startdate><enddate>20160713</enddate><creator>Park, Kellie A</creator><creator>Ribic, Adema</creator><creator>Laage Gaupp, Fabian M</creator><creator>Coman, Daniel</creator><creator>Huang, Yuegao</creator><creator>Dulla, Chris G</creator><creator>Hyder, Fahmeed</creator><creator>Biederer, Thomas</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0912-1514</orcidid><orcidid>https://orcid.org/0000-0002-6560-6535</orcidid><orcidid>https://orcid.org/0000-0001-6653-8645</orcidid><orcidid>https://orcid.org/0000-0002-8719-6741</orcidid><orcidid>https://orcid.org/0000-0002-6289-0817</orcidid></search><sort><creationdate>20160713</creationdate><title>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</title><author>Park, Kellie A ; Ribic, Adema ; Laage Gaupp, Fabian M ; Coman, Daniel ; Huang, Yuegao ; Dulla, Chris G ; Hyder, Fahmeed ; Biederer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-459bd83bf903eeaa4506f1ad792250f8af369381b43d293e79747a589d58c7bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>CA3 Region, Hippocampal - cytology</topic><topic>CA3 Region, Hippocampal - diagnostic imaging</topic><topic>Cell Adhesion Molecule-1</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Conditioning, Classical - drug effects</topic><topic>Fear - drug effects</topic><topic>Female</topic><topic>GABA Antagonists - pharmacology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Immunoglobulins - genetics</topic><topic>Immunoglobulins - metabolism</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Memory Disorders - diagnostic imaging</topic><topic>Memory Disorders - genetics</topic><topic>Memory Disorders - pathology</topic><topic>Memory Disorders - physiopathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - drug effects</topic><topic>Neural Pathways - physiology</topic><topic>Parvalbumins - metabolism</topic><topic>Pyridazines - pharmacology</topic><topic>Synapses - physiology</topic><topic>Synaptic Potentials - drug effects</topic><topic>Synaptic Potentials - genetics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kellie A</creatorcontrib><creatorcontrib>Ribic, Adema</creatorcontrib><creatorcontrib>Laage Gaupp, Fabian M</creatorcontrib><creatorcontrib>Coman, Daniel</creatorcontrib><creatorcontrib>Huang, Yuegao</creatorcontrib><creatorcontrib>Dulla, Chris G</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Biederer, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kellie A</au><au>Ribic, Adema</au><au>Laage Gaupp, Fabian M</au><au>Coman, Daniel</au><au>Huang, Yuegao</au><au>Dulla, Chris G</au><au>Hyder, Fahmeed</au><au>Biederer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2016-07-13</date><risdate>2016</risdate><volume>36</volume><issue>28</issue><spage>7464</spage><epage>7475</epage><pages>7464-7475</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>27413156</pmid><doi>10.1523/jneurosci.0189-16.2016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0912-1514</orcidid><orcidid>https://orcid.org/0000-0002-6560-6535</orcidid><orcidid>https://orcid.org/0000-0001-6653-8645</orcidid><orcidid>https://orcid.org/0000-0002-8719-6741</orcidid><orcidid>https://orcid.org/0000-0002-6289-0817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2016-07, Vol.36 (28), p.7464-7475
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4945666
source PubMed (Medline); MEDLINE; EZB Electronic Journals Library
subjects Animals
CA3 Region, Hippocampal - cytology
CA3 Region, Hippocampal - diagnostic imaging
Cell Adhesion Molecule-1
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Conditioning, Classical - drug effects
Fear - drug effects
Female
GABA Antagonists - pharmacology
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Immunoglobulins - genetics
Immunoglobulins - metabolism
In Vitro Techniques
Male
Memory Disorders - diagnostic imaging
Memory Disorders - genetics
Memory Disorders - pathology
Memory Disorders - physiopathology
Mice
Mice, Inbred C57BL
Mice, Knockout
Neural Inhibition - physiology
Neural Pathways - drug effects
Neural Pathways - physiology
Parvalbumins - metabolism
Pyridazines - pharmacology
Synapses - physiology
Synaptic Potentials - drug effects
Synaptic Potentials - genetics
Time Factors
title Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitatory%20Synaptic%20Drive%20and%20Feedforward%20Inhibition%20in%20the%20Hippocampal%20CA3%20Circuit%20Are%20Regulated%20by%20SynCAM%201&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Park,%20Kellie%20A&rft.date=2016-07-13&rft.volume=36&rft.issue=28&rft.spage=7464&rft.epage=7475&rft.pages=7464-7475&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0189-16.2016&rft_dat=%3Cproquest_pubme%3E1808705668%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808705668&rft_id=info:pmid/27413156&rfr_iscdi=true