The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness

Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not cle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2016-07, Vol.111 (1), p.90-99
Hauptverfasser: Tong, Jihong, Wu, Zhe, Briggs, Margaret M., Schulten, Klaus, McIntosh, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 90
container_title Biophysical journal
container_volume 111
creator Tong, Jihong
Wu, Zhe
Briggs, Margaret M.
Schulten, Klaus
McIntosh, Thomas J.
description Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10−13 cm3/s (mean ± SE), 3.0 ± 0.3 × 10−13 cm3/s, 2.5 ± 0.2 × 10−13 cm3/s, and 0.9 ± 0.1 × 10−13 cm3/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10−13 cm3/s and 2.5 ± 0.1 × 10−13 cm3/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.
doi_str_mv 10.1016/j.bpj.2016.05.039
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4944661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516303642</els_id><sourcerecordid>1804856546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-7ebb1f6574aecc3a4fce88d530e989fc306ef6999910986e05f9c6f9638931ce3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCD-CCLHHhkjBObCcWElJpy4e0EpXYqkfLcSasQzZO7aTS_nu82lIBB3yxZT_zasYPIa8Y5AyYfNfnzdTnRTrmIHIo1ROyYoIXGUAtn5IVAMis5EqckNMYewBWCGDPyUlRcQZVWa2I3WyR3poZA73GsEPTuMHNe2rGll77gPRqnIMZLdLvc1jsvKQr39Hzu8VMPrgx4_QSJ0y0H-naTa6lH91g9ilvs3X254gxviDPOjNEfPmwn5GbT1ebiy_Z-tvnrxfn68wKruaswqZhnRQVN2htaXhnsa5bUQKqWnW2BImdVGkxULVEEJ2yslOyrFXJLJZn5MMxd1qaHbYWD60PegpuZ8Jee-P03y-j2-of_l5zxbmULAW8fQgI_m7BOOudixaHwYzol6hZDbwWUnCZ0Df_oL1fwpjGO1CCV5KzIlHsSNngYwzYPTbDQB8U6l4nhfqgUIPQSWGqef3nFI8Vv50l4P0RwPSX9w6DjtZhUtS6gHbWrXf_if8FBrispw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805476412</pqid></control><display><type>article</type><title>The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tong, Jihong ; Wu, Zhe ; Briggs, Margaret M. ; Schulten, Klaus ; McIntosh, Thomas J.</creator><creatorcontrib>Tong, Jihong ; Wu, Zhe ; Briggs, Margaret M. ; Schulten, Klaus ; McIntosh, Thomas J.</creatorcontrib><description>Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10−13 cm3/s (mean ± SE), 3.0 ± 0.3 × 10−13 cm3/s, 2.5 ± 0.2 × 10−13 cm3/s, and 0.9 ± 0.1 × 10−13 cm3/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10−13 cm3/s and 2.5 ± 0.1 × 10−13 cm3/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.05.039</identifier><identifier>PMID: 27410737</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aquaporin 4 - chemistry ; Aquaporin 4 - metabolism ; Cells ; Cholesterol ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; Membranes ; Models, Molecular ; Permeability ; Porosity ; Protein Conformation ; Simulation ; Water - metabolism</subject><ispartof>Biophysical journal, 2016-07, Vol.111 (1), p.90-99</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 12, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-7ebb1f6574aecc3a4fce88d530e989fc306ef6999910986e05f9c6f9638931ce3</citedby><cites>FETCH-LOGICAL-c549t-7ebb1f6574aecc3a4fce88d530e989fc306ef6999910986e05f9c6f9638931ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944661/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2016.05.039$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27410737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Jihong</creatorcontrib><creatorcontrib>Wu, Zhe</creatorcontrib><creatorcontrib>Briggs, Margaret M.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>McIntosh, Thomas J.</creatorcontrib><title>The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10−13 cm3/s (mean ± SE), 3.0 ± 0.3 × 10−13 cm3/s, 2.5 ± 0.2 × 10−13 cm3/s, and 0.9 ± 0.1 × 10−13 cm3/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10−13 cm3/s and 2.5 ± 0.1 × 10−13 cm3/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.</description><subject>Aquaporin 4 - chemistry</subject><subject>Aquaporin 4 - metabolism</subject><subject>Cells</subject><subject>Cholesterol</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Protein Conformation</subject><subject>Simulation</subject><subject>Water - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EotvCD-CCLHHhkjBObCcWElJpy4e0EpXYqkfLcSasQzZO7aTS_nu82lIBB3yxZT_zasYPIa8Y5AyYfNfnzdTnRTrmIHIo1ROyYoIXGUAtn5IVAMis5EqckNMYewBWCGDPyUlRcQZVWa2I3WyR3poZA73GsEPTuMHNe2rGll77gPRqnIMZLdLvc1jsvKQr39Hzu8VMPrgx4_QSJ0y0H-naTa6lH91g9ilvs3X254gxviDPOjNEfPmwn5GbT1ebiy_Z-tvnrxfn68wKruaswqZhnRQVN2htaXhnsa5bUQKqWnW2BImdVGkxULVEEJ2yslOyrFXJLJZn5MMxd1qaHbYWD60PegpuZ8Jee-P03y-j2-of_l5zxbmULAW8fQgI_m7BOOudixaHwYzol6hZDbwWUnCZ0Df_oL1fwpjGO1CCV5KzIlHsSNngYwzYPTbDQB8U6l4nhfqgUIPQSWGqef3nFI8Vv50l4P0RwPSX9w6DjtZhUtS6gHbWrXf_if8FBrispw</recordid><startdate>20160712</startdate><enddate>20160712</enddate><creator>Tong, Jihong</creator><creator>Wu, Zhe</creator><creator>Briggs, Margaret M.</creator><creator>Schulten, Klaus</creator><creator>McIntosh, Thomas J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160712</creationdate><title>The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness</title><author>Tong, Jihong ; Wu, Zhe ; Briggs, Margaret M. ; Schulten, Klaus ; McIntosh, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-7ebb1f6574aecc3a4fce88d530e989fc306ef6999910986e05f9c6f9638931ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aquaporin 4 - chemistry</topic><topic>Aquaporin 4 - metabolism</topic><topic>Cells</topic><topic>Cholesterol</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Protein Conformation</topic><topic>Simulation</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Jihong</creatorcontrib><creatorcontrib>Wu, Zhe</creatorcontrib><creatorcontrib>Briggs, Margaret M.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>McIntosh, Thomas J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Jihong</au><au>Wu, Zhe</au><au>Briggs, Margaret M.</au><au>Schulten, Klaus</au><au>McIntosh, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-07-12</date><risdate>2016</risdate><volume>111</volume><issue>1</issue><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10−13 cm3/s (mean ± SE), 3.0 ± 0.3 × 10−13 cm3/s, 2.5 ± 0.2 × 10−13 cm3/s, and 0.9 ± 0.1 × 10−13 cm3/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10−13 cm3/s and 2.5 ± 0.1 × 10−13 cm3/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27410737</pmid><doi>10.1016/j.bpj.2016.05.039</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2016-07, Vol.111 (1), p.90-99
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4944661
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aquaporin 4 - chemistry
Aquaporin 4 - metabolism
Cells
Cholesterol
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
Membranes
Models, Molecular
Permeability
Porosity
Protein Conformation
Simulation
Water - metabolism
title The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Water%20Permeability%20and%20Pore%20Entrance%20Structure%20of%20Aquaporin-4%20Depend%20on%20Lipid%20Bilayer%20Thickness&rft.jtitle=Biophysical%20journal&rft.au=Tong,%20Jihong&rft.date=2016-07-12&rft.volume=111&rft.issue=1&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.05.039&rft_dat=%3Cproquest_pubme%3E1804856546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805476412&rft_id=info:pmid/27410737&rft_els_id=S0006349516303642&rfr_iscdi=true