PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1

Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mito...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2016-07, Vol.2 (7), p.e1501889-e1501889
Hauptverfasser: Xiang, Weiwen, Zhang, Qian, Lin, Xia, Wu, Shiying, Zhou, Yao, Meng, Fansen, Fan, Yunyun, Shen, Tao, Xiao, Mu, Xia, Zongping, Zou, Jian, Feng, Xin-Hua, Xu, Pinglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1501889
container_issue 7
container_start_page e1501889
container_title Science advances
container_volume 2
creator Xiang, Weiwen
Zhang, Qian
Lin, Xia
Wu, Shiying
Zhou, Yao
Meng, Fansen
Fan, Yunyun
Shen, Tao
Xiao, Mu
Xia, Zongping
Zou, Jian
Feng, Xin-Hua
Xu, Pinglong
description Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.
doi_str_mv 10.1126/sciadv.1501889
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4942338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1804865717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</originalsourceid><addsrcrecordid>eNpVUU1rGzEQFaWhCU6uPRYdc7GrkbSr3UvACekH-aRNexVj7aytsF450trgf18ldkJ6GGZ48-bNg8fYZxATAFl-Tc5js5lAIaCq6g_sSCpTjGWhq4_v5kN2ktKjEAJ0WRZQf2KH0miopRJHrLu_v4EpT76j3lHibjuEFDrv-K_bDFOffD_n2De5Br_xETveUJtx4sMihvV8wRsfyQ0ZXi1CyhW3HQ4-9Dy0_Gb69_fL-cP5FRyzgxa7RCf7PmJ_vl0-XPwYX999_3kxvR47VYthbBCFkhqdMHJGgK4tW1kCVMY0BFAiGTDOtIS6xgKcQmO0cxUoBNPomRqxs53uaj1bUuOoH7Jvu4p-iXFrA3r7_6b3CzsPG6trLZWqssDpXiCGpzWlwS59ctR12FNYJwuV0FVZZBuZOtlRXQwpRWrf3oCwzynZXUp2n1I--PLe3Bv9NRP1D5a9kDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804865717</pqid></control><display><type>article</type><title>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Xiang, Weiwen ; Zhang, Qian ; Lin, Xia ; Wu, Shiying ; Zhou, Yao ; Meng, Fansen ; Fan, Yunyun ; Shen, Tao ; Xiao, Mu ; Xia, Zongping ; Zou, Jian ; Feng, Xin-Hua ; Xu, Pinglong</creator><creatorcontrib>Xiang, Weiwen ; Zhang, Qian ; Lin, Xia ; Wu, Shiying ; Zhou, Yao ; Meng, Fansen ; Fan, Yunyun ; Shen, Tao ; Xiao, Mu ; Xia, Zongping ; Zou, Jian ; Feng, Xin-Hua ; Xu, Pinglong</creatorcontrib><description>Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1501889</identifier><identifier>PMID: 27419230</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Animals, Genetically Modified - metabolism ; Cell Line ; CRISPR-Cas Systems - genetics ; Cytosol - metabolism ; Embryo, Nonmammalian - metabolism ; Embryo, Nonmammalian - virology ; HEK293 Cells ; Humans ; I-kappa B Kinase - metabolism ; Interferon Regulatory Factor-3 - genetics ; Interferon Regulatory Factor-3 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Animal ; Protein Phosphatase 2C - antagonists &amp; inhibitors ; Protein Phosphatase 2C - genetics ; Protein Phosphatase 2C - metabolism ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; RNA - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; SciAdv r-articles ; Sendai virus - drug effects ; Sendai virus - pathogenicity ; Sendai virus - physiology ; Vesiculovirus - drug effects ; Vesiculovirus - pathogenicity ; Vesiculovirus - physiology ; Virology ; Zebrafish - growth &amp; development ; Zebrafish - metabolism</subject><ispartof>Science advances, 2016-07, Vol.2 (7), p.e1501889-e1501889</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</citedby><cites>FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</cites><orcidid>0000-0002-2975-1532 ; 0000-0001-7726-5443 ; 0000-0002-8814-090X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942338/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942338/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27419230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Weiwen</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Lin, Xia</creatorcontrib><creatorcontrib>Wu, Shiying</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Meng, Fansen</creatorcontrib><creatorcontrib>Fan, Yunyun</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Xiao, Mu</creatorcontrib><creatorcontrib>Xia, Zongping</creatorcontrib><creatorcontrib>Zou, Jian</creatorcontrib><creatorcontrib>Feng, Xin-Hua</creatorcontrib><creatorcontrib>Xu, Pinglong</creatorcontrib><title>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified - metabolism</subject><subject>Cell Line</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Cytosol - metabolism</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryo, Nonmammalian - virology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>I-kappa B Kinase - metabolism</subject><subject>Interferon Regulatory Factor-3 - genetics</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Animal</subject><subject>Protein Phosphatase 2C - antagonists &amp; inhibitors</subject><subject>Protein Phosphatase 2C - genetics</subject><subject>Protein Phosphatase 2C - metabolism</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>RNA - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>SciAdv r-articles</subject><subject>Sendai virus - drug effects</subject><subject>Sendai virus - pathogenicity</subject><subject>Sendai virus - physiology</subject><subject>Vesiculovirus - drug effects</subject><subject>Vesiculovirus - pathogenicity</subject><subject>Vesiculovirus - physiology</subject><subject>Virology</subject><subject>Zebrafish - growth &amp; development</subject><subject>Zebrafish - metabolism</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1rGzEQFaWhCU6uPRYdc7GrkbSr3UvACekH-aRNexVj7aytsF450trgf18ldkJ6GGZ48-bNg8fYZxATAFl-Tc5js5lAIaCq6g_sSCpTjGWhq4_v5kN2ktKjEAJ0WRZQf2KH0miopRJHrLu_v4EpT76j3lHibjuEFDrv-K_bDFOffD_n2De5Br_xETveUJtx4sMihvV8wRsfyQ0ZXi1CyhW3HQ4-9Dy0_Gb69_fL-cP5FRyzgxa7RCf7PmJ_vl0-XPwYX999_3kxvR47VYthbBCFkhqdMHJGgK4tW1kCVMY0BFAiGTDOtIS6xgKcQmO0cxUoBNPomRqxs53uaj1bUuOoH7Jvu4p-iXFrA3r7_6b3CzsPG6trLZWqssDpXiCGpzWlwS59ctR12FNYJwuV0FVZZBuZOtlRXQwpRWrf3oCwzynZXUp2n1I--PLe3Bv9NRP1D5a9kDE</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Xiang, Weiwen</creator><creator>Zhang, Qian</creator><creator>Lin, Xia</creator><creator>Wu, Shiying</creator><creator>Zhou, Yao</creator><creator>Meng, Fansen</creator><creator>Fan, Yunyun</creator><creator>Shen, Tao</creator><creator>Xiao, Mu</creator><creator>Xia, Zongping</creator><creator>Zou, Jian</creator><creator>Feng, Xin-Hua</creator><creator>Xu, Pinglong</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2975-1532</orcidid><orcidid>https://orcid.org/0000-0001-7726-5443</orcidid><orcidid>https://orcid.org/0000-0002-8814-090X</orcidid></search><sort><creationdate>20160701</creationdate><title>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</title><author>Xiang, Weiwen ; Zhang, Qian ; Lin, Xia ; Wu, Shiying ; Zhou, Yao ; Meng, Fansen ; Fan, Yunyun ; Shen, Tao ; Xiao, Mu ; Xia, Zongping ; Zou, Jian ; Feng, Xin-Hua ; Xu, Pinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified - metabolism</topic><topic>Cell Line</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Cytosol - metabolism</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryo, Nonmammalian - virology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>I-kappa B Kinase - metabolism</topic><topic>Interferon Regulatory Factor-3 - genetics</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Animal</topic><topic>Protein Phosphatase 2C - antagonists &amp; inhibitors</topic><topic>Protein Phosphatase 2C - genetics</topic><topic>Protein Phosphatase 2C - metabolism</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>RNA - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>SciAdv r-articles</topic><topic>Sendai virus - drug effects</topic><topic>Sendai virus - pathogenicity</topic><topic>Sendai virus - physiology</topic><topic>Vesiculovirus - drug effects</topic><topic>Vesiculovirus - pathogenicity</topic><topic>Vesiculovirus - physiology</topic><topic>Virology</topic><topic>Zebrafish - growth &amp; development</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Weiwen</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Lin, Xia</creatorcontrib><creatorcontrib>Wu, Shiying</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Meng, Fansen</creatorcontrib><creatorcontrib>Fan, Yunyun</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Xiao, Mu</creatorcontrib><creatorcontrib>Xia, Zongping</creatorcontrib><creatorcontrib>Zou, Jian</creatorcontrib><creatorcontrib>Feng, Xin-Hua</creatorcontrib><creatorcontrib>Xu, Pinglong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Weiwen</au><au>Zhang, Qian</au><au>Lin, Xia</au><au>Wu, Shiying</au><au>Zhou, Yao</au><au>Meng, Fansen</au><au>Fan, Yunyun</au><au>Shen, Tao</au><au>Xiao, Mu</au><au>Xia, Zongping</au><au>Zou, Jian</au><au>Feng, Xin-Hua</au><au>Xu, Pinglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>2</volume><issue>7</issue><spage>e1501889</spage><epage>e1501889</epage><pages>e1501889-e1501889</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27419230</pmid><doi>10.1126/sciadv.1501889</doi><orcidid>https://orcid.org/0000-0002-2975-1532</orcidid><orcidid>https://orcid.org/0000-0001-7726-5443</orcidid><orcidid>https://orcid.org/0000-0002-8814-090X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2016-07, Vol.2 (7), p.e1501889-e1501889
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4942338
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Animals, Genetically Modified - metabolism
Cell Line
CRISPR-Cas Systems - genetics
Cytosol - metabolism
Embryo, Nonmammalian - metabolism
Embryo, Nonmammalian - virology
HEK293 Cells
Humans
I-kappa B Kinase - metabolism
Interferon Regulatory Factor-3 - genetics
Interferon Regulatory Factor-3 - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Models, Animal
Protein Phosphatase 2C - antagonists & inhibitors
Protein Phosphatase 2C - genetics
Protein Phosphatase 2C - metabolism
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
RNA - metabolism
RNA Interference
RNA, Small Interfering - metabolism
SciAdv r-articles
Sendai virus - drug effects
Sendai virus - pathogenicity
Sendai virus - physiology
Vesiculovirus - drug effects
Vesiculovirus - pathogenicity
Vesiculovirus - physiology
Virology
Zebrafish - growth & development
Zebrafish - metabolism
title PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PPM1A%20silences%20cytosolic%20RNA%20sensing%20and%20antiviral%20defense%20through%20direct%20dephosphorylation%20of%20MAVS%20and%20TBK1&rft.jtitle=Science%20advances&rft.au=Xiang,%20Weiwen&rft.date=2016-07-01&rft.volume=2&rft.issue=7&rft.spage=e1501889&rft.epage=e1501889&rft.pages=e1501889-e1501889&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1501889&rft_dat=%3Cproquest_pubme%3E1804865717%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1804865717&rft_id=info:pmid/27419230&rfr_iscdi=true