PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1
Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mito...
Gespeichert in:
Veröffentlicht in: | Science advances 2016-07, Vol.2 (7), p.e1501889-e1501889 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1501889 |
---|---|
container_issue | 7 |
container_start_page | e1501889 |
container_title | Science advances |
container_volume | 2 |
creator | Xiang, Weiwen Zhang, Qian Lin, Xia Wu, Shiying Zhou, Yao Meng, Fansen Fan, Yunyun Shen, Tao Xiao, Mu Xia, Zongping Zou, Jian Feng, Xin-Hua Xu, Pinglong |
description | Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals. |
doi_str_mv | 10.1126/sciadv.1501889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4942338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1804865717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</originalsourceid><addsrcrecordid>eNpVUU1rGzEQFaWhCU6uPRYdc7GrkbSr3UvACekH-aRNexVj7aytsF450trgf18ldkJ6GGZ48-bNg8fYZxATAFl-Tc5js5lAIaCq6g_sSCpTjGWhq4_v5kN2ktKjEAJ0WRZQf2KH0miopRJHrLu_v4EpT76j3lHibjuEFDrv-K_bDFOffD_n2De5Br_xETveUJtx4sMihvV8wRsfyQ0ZXi1CyhW3HQ4-9Dy0_Gb69_fL-cP5FRyzgxa7RCf7PmJ_vl0-XPwYX999_3kxvR47VYthbBCFkhqdMHJGgK4tW1kCVMY0BFAiGTDOtIS6xgKcQmO0cxUoBNPomRqxs53uaj1bUuOoH7Jvu4p-iXFrA3r7_6b3CzsPG6trLZWqssDpXiCGpzWlwS59ctR12FNYJwuV0FVZZBuZOtlRXQwpRWrf3oCwzynZXUp2n1I--PLe3Bv9NRP1D5a9kDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804865717</pqid></control><display><type>article</type><title>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Xiang, Weiwen ; Zhang, Qian ; Lin, Xia ; Wu, Shiying ; Zhou, Yao ; Meng, Fansen ; Fan, Yunyun ; Shen, Tao ; Xiao, Mu ; Xia, Zongping ; Zou, Jian ; Feng, Xin-Hua ; Xu, Pinglong</creator><creatorcontrib>Xiang, Weiwen ; Zhang, Qian ; Lin, Xia ; Wu, Shiying ; Zhou, Yao ; Meng, Fansen ; Fan, Yunyun ; Shen, Tao ; Xiao, Mu ; Xia, Zongping ; Zou, Jian ; Feng, Xin-Hua ; Xu, Pinglong</creatorcontrib><description>Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1501889</identifier><identifier>PMID: 27419230</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Animals, Genetically Modified - metabolism ; Cell Line ; CRISPR-Cas Systems - genetics ; Cytosol - metabolism ; Embryo, Nonmammalian - metabolism ; Embryo, Nonmammalian - virology ; HEK293 Cells ; Humans ; I-kappa B Kinase - metabolism ; Interferon Regulatory Factor-3 - genetics ; Interferon Regulatory Factor-3 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Animal ; Protein Phosphatase 2C - antagonists & inhibitors ; Protein Phosphatase 2C - genetics ; Protein Phosphatase 2C - metabolism ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; RNA - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; SciAdv r-articles ; Sendai virus - drug effects ; Sendai virus - pathogenicity ; Sendai virus - physiology ; Vesiculovirus - drug effects ; Vesiculovirus - pathogenicity ; Vesiculovirus - physiology ; Virology ; Zebrafish - growth & development ; Zebrafish - metabolism</subject><ispartof>Science advances, 2016-07, Vol.2 (7), p.e1501889-e1501889</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</citedby><cites>FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</cites><orcidid>0000-0002-2975-1532 ; 0000-0001-7726-5443 ; 0000-0002-8814-090X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942338/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942338/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27419230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Weiwen</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Lin, Xia</creatorcontrib><creatorcontrib>Wu, Shiying</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Meng, Fansen</creatorcontrib><creatorcontrib>Fan, Yunyun</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Xiao, Mu</creatorcontrib><creatorcontrib>Xia, Zongping</creatorcontrib><creatorcontrib>Zou, Jian</creatorcontrib><creatorcontrib>Feng, Xin-Hua</creatorcontrib><creatorcontrib>Xu, Pinglong</creatorcontrib><title>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified - metabolism</subject><subject>Cell Line</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Cytosol - metabolism</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryo, Nonmammalian - virology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>I-kappa B Kinase - metabolism</subject><subject>Interferon Regulatory Factor-3 - genetics</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Animal</subject><subject>Protein Phosphatase 2C - antagonists & inhibitors</subject><subject>Protein Phosphatase 2C - genetics</subject><subject>Protein Phosphatase 2C - metabolism</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>RNA - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>SciAdv r-articles</subject><subject>Sendai virus - drug effects</subject><subject>Sendai virus - pathogenicity</subject><subject>Sendai virus - physiology</subject><subject>Vesiculovirus - drug effects</subject><subject>Vesiculovirus - pathogenicity</subject><subject>Vesiculovirus - physiology</subject><subject>Virology</subject><subject>Zebrafish - growth & development</subject><subject>Zebrafish - metabolism</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1rGzEQFaWhCU6uPRYdc7GrkbSr3UvACekH-aRNexVj7aytsF450trgf18ldkJ6GGZ48-bNg8fYZxATAFl-Tc5js5lAIaCq6g_sSCpTjGWhq4_v5kN2ktKjEAJ0WRZQf2KH0miopRJHrLu_v4EpT76j3lHibjuEFDrv-K_bDFOffD_n2De5Br_xETveUJtx4sMihvV8wRsfyQ0ZXi1CyhW3HQ4-9Dy0_Gb69_fL-cP5FRyzgxa7RCf7PmJ_vl0-XPwYX999_3kxvR47VYthbBCFkhqdMHJGgK4tW1kCVMY0BFAiGTDOtIS6xgKcQmO0cxUoBNPomRqxs53uaj1bUuOoH7Jvu4p-iXFrA3r7_6b3CzsPG6trLZWqssDpXiCGpzWlwS59ctR12FNYJwuV0FVZZBuZOtlRXQwpRWrf3oCwzynZXUp2n1I--PLe3Bv9NRP1D5a9kDE</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Xiang, Weiwen</creator><creator>Zhang, Qian</creator><creator>Lin, Xia</creator><creator>Wu, Shiying</creator><creator>Zhou, Yao</creator><creator>Meng, Fansen</creator><creator>Fan, Yunyun</creator><creator>Shen, Tao</creator><creator>Xiao, Mu</creator><creator>Xia, Zongping</creator><creator>Zou, Jian</creator><creator>Feng, Xin-Hua</creator><creator>Xu, Pinglong</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2975-1532</orcidid><orcidid>https://orcid.org/0000-0001-7726-5443</orcidid><orcidid>https://orcid.org/0000-0002-8814-090X</orcidid></search><sort><creationdate>20160701</creationdate><title>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</title><author>Xiang, Weiwen ; Zhang, Qian ; Lin, Xia ; Wu, Shiying ; Zhou, Yao ; Meng, Fansen ; Fan, Yunyun ; Shen, Tao ; Xiao, Mu ; Xia, Zongping ; Zou, Jian ; Feng, Xin-Hua ; Xu, Pinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-7aa0324ac072be1acf6f2611877de116ae717c7fea49a51c3a774cc813a17d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified - metabolism</topic><topic>Cell Line</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Cytosol - metabolism</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryo, Nonmammalian - virology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>I-kappa B Kinase - metabolism</topic><topic>Interferon Regulatory Factor-3 - genetics</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Animal</topic><topic>Protein Phosphatase 2C - antagonists & inhibitors</topic><topic>Protein Phosphatase 2C - genetics</topic><topic>Protein Phosphatase 2C - metabolism</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>RNA - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>SciAdv r-articles</topic><topic>Sendai virus - drug effects</topic><topic>Sendai virus - pathogenicity</topic><topic>Sendai virus - physiology</topic><topic>Vesiculovirus - drug effects</topic><topic>Vesiculovirus - pathogenicity</topic><topic>Vesiculovirus - physiology</topic><topic>Virology</topic><topic>Zebrafish - growth & development</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Weiwen</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Lin, Xia</creatorcontrib><creatorcontrib>Wu, Shiying</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Meng, Fansen</creatorcontrib><creatorcontrib>Fan, Yunyun</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Xiao, Mu</creatorcontrib><creatorcontrib>Xia, Zongping</creatorcontrib><creatorcontrib>Zou, Jian</creatorcontrib><creatorcontrib>Feng, Xin-Hua</creatorcontrib><creatorcontrib>Xu, Pinglong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Weiwen</au><au>Zhang, Qian</au><au>Lin, Xia</au><au>Wu, Shiying</au><au>Zhou, Yao</au><au>Meng, Fansen</au><au>Fan, Yunyun</au><au>Shen, Tao</au><au>Xiao, Mu</au><au>Xia, Zongping</au><au>Zou, Jian</au><au>Feng, Xin-Hua</au><au>Xu, Pinglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>2</volume><issue>7</issue><spage>e1501889</spage><epage>e1501889</epage><pages>e1501889-e1501889</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27419230</pmid><doi>10.1126/sciadv.1501889</doi><orcidid>https://orcid.org/0000-0002-2975-1532</orcidid><orcidid>https://orcid.org/0000-0001-7726-5443</orcidid><orcidid>https://orcid.org/0000-0002-8814-090X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2016-07, Vol.2 (7), p.e1501889-e1501889 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4942338 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Animals, Genetically Modified - metabolism Cell Line CRISPR-Cas Systems - genetics Cytosol - metabolism Embryo, Nonmammalian - metabolism Embryo, Nonmammalian - virology HEK293 Cells Humans I-kappa B Kinase - metabolism Interferon Regulatory Factor-3 - genetics Interferon Regulatory Factor-3 - metabolism Mice Mice, Inbred C57BL Mice, Knockout Models, Animal Protein Phosphatase 2C - antagonists & inhibitors Protein Phosphatase 2C - genetics Protein Phosphatase 2C - metabolism Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism RNA - metabolism RNA Interference RNA, Small Interfering - metabolism SciAdv r-articles Sendai virus - drug effects Sendai virus - pathogenicity Sendai virus - physiology Vesiculovirus - drug effects Vesiculovirus - pathogenicity Vesiculovirus - physiology Virology Zebrafish - growth & development Zebrafish - metabolism |
title | PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PPM1A%20silences%20cytosolic%20RNA%20sensing%20and%20antiviral%20defense%20through%20direct%20dephosphorylation%20of%20MAVS%20and%20TBK1&rft.jtitle=Science%20advances&rft.au=Xiang,%20Weiwen&rft.date=2016-07-01&rft.volume=2&rft.issue=7&rft.spage=e1501889&rft.epage=e1501889&rft.pages=e1501889-e1501889&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1501889&rft_dat=%3Cproquest_pubme%3E1804865717%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1804865717&rft_id=info:pmid/27419230&rfr_iscdi=true |