Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma: Development, Implementation, and Lessons Learned

For children who present to emergency departments (EDs) due to blunt head trauma, ED clinicians must decide who requires computed tomography (CT) scanning to evaluate for traumatic brain injury (TBI). The Pediatric Emergency Care Applied Research Network (PECARN) derived and validated two age-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied clinical informatics 2016-01, Vol.7 (2), p.534-542
Hauptverfasser: Tham, Eric, Swietlik, Marguerite, Deakyne, Sara, Hoffman, Jeffrey M, Grundmeier, Robert W, Paterno, Marilyn D, Rocha, Beatriz H, Schaeffer, Molly H, Pabbathi, Deepika, Alessandrini, Evaline, Ballard, Dustin, Goldberg, Howard S, Kuppermann, Nathan, Dayan, Peter S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 2
container_start_page 534
container_title Applied clinical informatics
container_volume 7
creator Tham, Eric
Swietlik, Marguerite
Deakyne, Sara
Hoffman, Jeffrey M
Grundmeier, Robert W
Paterno, Marilyn D
Rocha, Beatriz H
Schaeffer, Molly H
Pabbathi, Deepika
Alessandrini, Evaline
Ballard, Dustin
Goldberg, Howard S
Kuppermann, Nathan
Dayan, Peter S
description For children who present to emergency departments (EDs) due to blunt head trauma, ED clinicians must decide who requires computed tomography (CT) scanning to evaluate for traumatic brain injury (TBI). The Pediatric Emergency Care Applied Research Network (PECARN) derived and validated two age-based prediction rules to identify children at very low risk of clinically-important traumatic brain injuries (ciTBIs) who do not typically require CT scans. In this case report, we describe the strategy used to implement the PECARN TBI prediction rules via electronic health record (EHR) clinical decision support (CDS) as the intervention in a multicenter clinical trial. Thirteen EDs participated in this trial. The 10 sites receiving the CDS intervention used the Epic(®) EHR. All sites implementing EHR-based CDS built the rules by using the vendor's CDS engine. Based on a sociotechnical analysis, we designed the CDS so that recommendations could be displayed immediately after any provider entered prediction rule data. One central site developed and tested the intervention package to be exported to other sites. The intervention package included a clinical trial alert, an electronic data collection form, the CDS rules and the format for recommendations. The original PECARN head trauma prediction rules were derived from physician documentation while this pragmatic trial led each site to customize their workflows and allow multiple different providers to complete the head trauma assessments. These differences in workflows led to varying completion rates across sites as well as differences in the types of providers completing the electronic data form. Site variation in internal change management processes made it challenging to maintain the same rigor across all sites. This led to downstream effects when data reports were developed. The process of a centralized build and export of a CDS system in one commercial EHR system successfully supported a multicenter clinical trial.
doi_str_mv 10.4338/ACI-2015-10-CR-0144
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1806077089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-b3c675bf7f2f7537c377a3c0c551809c0181fc53b5ed48fda6bbce68c5553fc53</originalsourceid><addsrcrecordid>eNpVUU1r3DAQFSUlCZv8gkDRsYc4lVaWJfdQCG6bLGxJyMdZyPIoUZEtR7IDhfz4yiQN27nMMO_NmxkeQieUnJWMyS_nzaZYE8oLSormpiC0LD-gQyqruiBsLfZ26gN0nNJvkoNXVEqxjw7WomSC8PoQvTTeDc5oj7-DccmFAd_O4xjihG2IWONfs5-cgWGCiO-iy8Rg8TV0Tk_RGXwJust9Pff6a5Z4Bh_GPrNP8aYfPSylnrLqKdZDh7eQUhhSzjoO0B2hj1b7BMdveYXuf_64ay6L7dXFpjnfFoZRMhUtM5XgrRV2bQVnwjAhNDPEcE4lqQ2hklrDWcuhK6XtdNW2BiqZcc4WYIW-veqOc9tDt3wTtVdjdL2Of1TQTv2PDO5RPYRnVdYllVxmgc9vAjE8zZAm1btkwHs9QJiTymdURAgi60xlr1QTQ0oR7PsaStRincrWqcW6pdHcqMW6PPVp98L3mX9Gsb-DspdS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806077089</pqid></control><display><type>article</type><title>Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma: Development, Implementation, and Lessons Learned</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Tham, Eric ; Swietlik, Marguerite ; Deakyne, Sara ; Hoffman, Jeffrey M ; Grundmeier, Robert W ; Paterno, Marilyn D ; Rocha, Beatriz H ; Schaeffer, Molly H ; Pabbathi, Deepika ; Alessandrini, Evaline ; Ballard, Dustin ; Goldberg, Howard S ; Kuppermann, Nathan ; Dayan, Peter S</creator><creatorcontrib>Tham, Eric ; Swietlik, Marguerite ; Deakyne, Sara ; Hoffman, Jeffrey M ; Grundmeier, Robert W ; Paterno, Marilyn D ; Rocha, Beatriz H ; Schaeffer, Molly H ; Pabbathi, Deepika ; Alessandrini, Evaline ; Ballard, Dustin ; Goldberg, Howard S ; Kuppermann, Nathan ; Dayan, Peter S ; Pediatric Emergency Care Applied Research Network (PECARN) ; for the Pediatric Emergency Care Applied Research Network (PECARN)</creatorcontrib><description>For children who present to emergency departments (EDs) due to blunt head trauma, ED clinicians must decide who requires computed tomography (CT) scanning to evaluate for traumatic brain injury (TBI). The Pediatric Emergency Care Applied Research Network (PECARN) derived and validated two age-based prediction rules to identify children at very low risk of clinically-important traumatic brain injuries (ciTBIs) who do not typically require CT scans. In this case report, we describe the strategy used to implement the PECARN TBI prediction rules via electronic health record (EHR) clinical decision support (CDS) as the intervention in a multicenter clinical trial. Thirteen EDs participated in this trial. The 10 sites receiving the CDS intervention used the Epic(®) EHR. All sites implementing EHR-based CDS built the rules by using the vendor's CDS engine. Based on a sociotechnical analysis, we designed the CDS so that recommendations could be displayed immediately after any provider entered prediction rule data. One central site developed and tested the intervention package to be exported to other sites. The intervention package included a clinical trial alert, an electronic data collection form, the CDS rules and the format for recommendations. The original PECARN head trauma prediction rules were derived from physician documentation while this pragmatic trial led each site to customize their workflows and allow multiple different providers to complete the head trauma assessments. These differences in workflows led to varying completion rates across sites as well as differences in the types of providers completing the electronic data form. Site variation in internal change management processes made it challenging to maintain the same rigor across all sites. This led to downstream effects when data reports were developed. The process of a centralized build and export of a CDS system in one commercial EHR system successfully supported a multicenter clinical trial.</description><identifier>ISSN: 1869-0327</identifier><identifier>EISSN: 1869-0327</identifier><identifier>DOI: 10.4338/ACI-2015-10-CR-0144</identifier><identifier>PMID: 27437059</identifier><language>eng</language><publisher>Germany: Schattauer</publisher><subject>Case Report ; Child ; Craniocerebral Trauma - diagnostic imaging ; Decision Support Systems, Clinical ; Emergency Service, Hospital ; Humans ; Tomography, X-Ray Computed</subject><ispartof>Applied clinical informatics, 2016-01, Vol.7 (2), p.534-542</ispartof><rights>Copyright Schattauer 2016 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-b3c675bf7f2f7537c377a3c0c551809c0181fc53b5ed48fda6bbce68c5553fc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941858/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941858/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27437059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tham, Eric</creatorcontrib><creatorcontrib>Swietlik, Marguerite</creatorcontrib><creatorcontrib>Deakyne, Sara</creatorcontrib><creatorcontrib>Hoffman, Jeffrey M</creatorcontrib><creatorcontrib>Grundmeier, Robert W</creatorcontrib><creatorcontrib>Paterno, Marilyn D</creatorcontrib><creatorcontrib>Rocha, Beatriz H</creatorcontrib><creatorcontrib>Schaeffer, Molly H</creatorcontrib><creatorcontrib>Pabbathi, Deepika</creatorcontrib><creatorcontrib>Alessandrini, Evaline</creatorcontrib><creatorcontrib>Ballard, Dustin</creatorcontrib><creatorcontrib>Goldberg, Howard S</creatorcontrib><creatorcontrib>Kuppermann, Nathan</creatorcontrib><creatorcontrib>Dayan, Peter S</creatorcontrib><creatorcontrib>Pediatric Emergency Care Applied Research Network (PECARN)</creatorcontrib><creatorcontrib>for the Pediatric Emergency Care Applied Research Network (PECARN)</creatorcontrib><title>Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma: Development, Implementation, and Lessons Learned</title><title>Applied clinical informatics</title><addtitle>Appl Clin Inform</addtitle><description>For children who present to emergency departments (EDs) due to blunt head trauma, ED clinicians must decide who requires computed tomography (CT) scanning to evaluate for traumatic brain injury (TBI). The Pediatric Emergency Care Applied Research Network (PECARN) derived and validated two age-based prediction rules to identify children at very low risk of clinically-important traumatic brain injuries (ciTBIs) who do not typically require CT scans. In this case report, we describe the strategy used to implement the PECARN TBI prediction rules via electronic health record (EHR) clinical decision support (CDS) as the intervention in a multicenter clinical trial. Thirteen EDs participated in this trial. The 10 sites receiving the CDS intervention used the Epic(®) EHR. All sites implementing EHR-based CDS built the rules by using the vendor's CDS engine. Based on a sociotechnical analysis, we designed the CDS so that recommendations could be displayed immediately after any provider entered prediction rule data. One central site developed and tested the intervention package to be exported to other sites. The intervention package included a clinical trial alert, an electronic data collection form, the CDS rules and the format for recommendations. The original PECARN head trauma prediction rules were derived from physician documentation while this pragmatic trial led each site to customize their workflows and allow multiple different providers to complete the head trauma assessments. These differences in workflows led to varying completion rates across sites as well as differences in the types of providers completing the electronic data form. Site variation in internal change management processes made it challenging to maintain the same rigor across all sites. This led to downstream effects when data reports were developed. The process of a centralized build and export of a CDS system in one commercial EHR system successfully supported a multicenter clinical trial.</description><subject>Case Report</subject><subject>Child</subject><subject>Craniocerebral Trauma - diagnostic imaging</subject><subject>Decision Support Systems, Clinical</subject><subject>Emergency Service, Hospital</subject><subject>Humans</subject><subject>Tomography, X-Ray Computed</subject><issn>1869-0327</issn><issn>1869-0327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1r3DAQFSUlCZv8gkDRsYc4lVaWJfdQCG6bLGxJyMdZyPIoUZEtR7IDhfz4yiQN27nMMO_NmxkeQieUnJWMyS_nzaZYE8oLSormpiC0LD-gQyqruiBsLfZ26gN0nNJvkoNXVEqxjw7WomSC8PoQvTTeDc5oj7-DccmFAd_O4xjihG2IWONfs5-cgWGCiO-iy8Rg8TV0Tk_RGXwJust9Pff6a5Z4Bh_GPrNP8aYfPSylnrLqKdZDh7eQUhhSzjoO0B2hj1b7BMdveYXuf_64ay6L7dXFpjnfFoZRMhUtM5XgrRV2bQVnwjAhNDPEcE4lqQ2hklrDWcuhK6XtdNW2BiqZcc4WYIW-veqOc9tDt3wTtVdjdL2Of1TQTv2PDO5RPYRnVdYllVxmgc9vAjE8zZAm1btkwHs9QJiTymdURAgi60xlr1QTQ0oR7PsaStRincrWqcW6pdHcqMW6PPVp98L3mX9Gsb-DspdS</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Tham, Eric</creator><creator>Swietlik, Marguerite</creator><creator>Deakyne, Sara</creator><creator>Hoffman, Jeffrey M</creator><creator>Grundmeier, Robert W</creator><creator>Paterno, Marilyn D</creator><creator>Rocha, Beatriz H</creator><creator>Schaeffer, Molly H</creator><creator>Pabbathi, Deepika</creator><creator>Alessandrini, Evaline</creator><creator>Ballard, Dustin</creator><creator>Goldberg, Howard S</creator><creator>Kuppermann, Nathan</creator><creator>Dayan, Peter S</creator><general>Schattauer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma: Development, Implementation, and Lessons Learned</title><author>Tham, Eric ; Swietlik, Marguerite ; Deakyne, Sara ; Hoffman, Jeffrey M ; Grundmeier, Robert W ; Paterno, Marilyn D ; Rocha, Beatriz H ; Schaeffer, Molly H ; Pabbathi, Deepika ; Alessandrini, Evaline ; Ballard, Dustin ; Goldberg, Howard S ; Kuppermann, Nathan ; Dayan, Peter S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-b3c675bf7f2f7537c377a3c0c551809c0181fc53b5ed48fda6bbce68c5553fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Case Report</topic><topic>Child</topic><topic>Craniocerebral Trauma - diagnostic imaging</topic><topic>Decision Support Systems, Clinical</topic><topic>Emergency Service, Hospital</topic><topic>Humans</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tham, Eric</creatorcontrib><creatorcontrib>Swietlik, Marguerite</creatorcontrib><creatorcontrib>Deakyne, Sara</creatorcontrib><creatorcontrib>Hoffman, Jeffrey M</creatorcontrib><creatorcontrib>Grundmeier, Robert W</creatorcontrib><creatorcontrib>Paterno, Marilyn D</creatorcontrib><creatorcontrib>Rocha, Beatriz H</creatorcontrib><creatorcontrib>Schaeffer, Molly H</creatorcontrib><creatorcontrib>Pabbathi, Deepika</creatorcontrib><creatorcontrib>Alessandrini, Evaline</creatorcontrib><creatorcontrib>Ballard, Dustin</creatorcontrib><creatorcontrib>Goldberg, Howard S</creatorcontrib><creatorcontrib>Kuppermann, Nathan</creatorcontrib><creatorcontrib>Dayan, Peter S</creatorcontrib><creatorcontrib>Pediatric Emergency Care Applied Research Network (PECARN)</creatorcontrib><creatorcontrib>for the Pediatric Emergency Care Applied Research Network (PECARN)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied clinical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tham, Eric</au><au>Swietlik, Marguerite</au><au>Deakyne, Sara</au><au>Hoffman, Jeffrey M</au><au>Grundmeier, Robert W</au><au>Paterno, Marilyn D</au><au>Rocha, Beatriz H</au><au>Schaeffer, Molly H</au><au>Pabbathi, Deepika</au><au>Alessandrini, Evaline</au><au>Ballard, Dustin</au><au>Goldberg, Howard S</au><au>Kuppermann, Nathan</au><au>Dayan, Peter S</au><aucorp>Pediatric Emergency Care Applied Research Network (PECARN)</aucorp><aucorp>for the Pediatric Emergency Care Applied Research Network (PECARN)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma: Development, Implementation, and Lessons Learned</atitle><jtitle>Applied clinical informatics</jtitle><addtitle>Appl Clin Inform</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>534</spage><epage>542</epage><pages>534-542</pages><issn>1869-0327</issn><eissn>1869-0327</eissn><abstract>For children who present to emergency departments (EDs) due to blunt head trauma, ED clinicians must decide who requires computed tomography (CT) scanning to evaluate for traumatic brain injury (TBI). The Pediatric Emergency Care Applied Research Network (PECARN) derived and validated two age-based prediction rules to identify children at very low risk of clinically-important traumatic brain injuries (ciTBIs) who do not typically require CT scans. In this case report, we describe the strategy used to implement the PECARN TBI prediction rules via electronic health record (EHR) clinical decision support (CDS) as the intervention in a multicenter clinical trial. Thirteen EDs participated in this trial. The 10 sites receiving the CDS intervention used the Epic(®) EHR. All sites implementing EHR-based CDS built the rules by using the vendor's CDS engine. Based on a sociotechnical analysis, we designed the CDS so that recommendations could be displayed immediately after any provider entered prediction rule data. One central site developed and tested the intervention package to be exported to other sites. The intervention package included a clinical trial alert, an electronic data collection form, the CDS rules and the format for recommendations. The original PECARN head trauma prediction rules were derived from physician documentation while this pragmatic trial led each site to customize their workflows and allow multiple different providers to complete the head trauma assessments. These differences in workflows led to varying completion rates across sites as well as differences in the types of providers completing the electronic data form. Site variation in internal change management processes made it challenging to maintain the same rigor across all sites. This led to downstream effects when data reports were developed. The process of a centralized build and export of a CDS system in one commercial EHR system successfully supported a multicenter clinical trial.</abstract><cop>Germany</cop><pub>Schattauer</pub><pmid>27437059</pmid><doi>10.4338/ACI-2015-10-CR-0144</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-0327
ispartof Applied clinical informatics, 2016-01, Vol.7 (2), p.534-542
issn 1869-0327
1869-0327
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941858
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Case Report
Child
Craniocerebral Trauma - diagnostic imaging
Decision Support Systems, Clinical
Emergency Service, Hospital
Humans
Tomography, X-Ray Computed
title Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma: Development, Implementation, and Lessons Learned
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20Decision%20Support%20for%20a%20Multicenter%20Trial%20of%20Pediatric%20Head%20Trauma:%20Development,%20Implementation,%20and%20Lessons%20Learned&rft.jtitle=Applied%20clinical%20informatics&rft.au=Tham,%20Eric&rft.aucorp=Pediatric%20Emergency%20Care%20Applied%20Research%20Network%20(PECARN)&rft.date=2016-01-01&rft.volume=7&rft.issue=2&rft.spage=534&rft.epage=542&rft.pages=534-542&rft.issn=1869-0327&rft.eissn=1869-0327&rft_id=info:doi/10.4338/ACI-2015-10-CR-0144&rft_dat=%3Cproquest_pubme%3E1806077089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806077089&rft_id=info:pmid/27437059&rfr_iscdi=true