A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows

The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2016-05, Vol.110 (9), p.2053-2065
Hauptverfasser: Monteith, Corey E., Brunner, Matthew E., Djagaeva, Inna, Bielecki, Anthony M., Deutsch, Joshua M., Saxton, William M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2065
container_issue 9
container_start_page 2053
container_title Biophysical journal
container_volume 110
creator Monteith, Corey E.
Brunner, Matthew E.
Djagaeva, Inna
Bielecki, Anthony M.
Deutsch, Joshua M.
Saxton, William M.
description The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.
doi_str_mv 10.1016/j.bpj.2016.03.036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4939475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516301217</els_id><sourcerecordid>4072915611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-623d430dd3f7b75c9687e6174c281e74cfbc5fd7997616d252632027c04a70443</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6A7xIwIuXHvOdjoIwjI6Ku3hQzyGdpGfTdCezSffI_nuzzLqoB6GgCuqpl6p6AXiO0RojLF4P6-4wrEkt14jWEA_ACnNGGoRa8RCsEEKioUzxM_CklAEhTDjCj8EZkViIFtMVcBt46e2ViaFMsE8Zbm_mdBhNmYKF3-bszRTi_g38EqIvITbvczj6CDdj2MfJxxmmHl4Gm9O8dMvoCzTRwZ0pM9yNS6jlmH6Wp-BRb8bin93lc_Bj9-H79lNz8fXj5-3morGc8bkRhDpGkXO0l53kVolWeoEls6TFvqa-s7x3UikpsHCEE0EJItIiZiRijJ6Ddyfdw9JN3tm6XzajPuQwmXyjkwn6704MV3qfjpopqpjkVeDVnUBO14svs55CsX4cTfRpKRrLViHKJaIVffkPOqQlx3pepRThimKCK4VPVP1QKdn398tgpG891IOuHupbDzWiNUSdefHnFfcTv02rwNsT4Osvj8FnXWzw0XoXsrezdin8R_4XrTusBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792593121</pqid></control><display><type>article</type><title>A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Monteith, Corey E. ; Brunner, Matthew E. ; Djagaeva, Inna ; Bielecki, Anthony M. ; Deutsch, Joshua M. ; Saxton, William M.</creator><creatorcontrib>Monteith, Corey E. ; Brunner, Matthew E. ; Djagaeva, Inna ; Bielecki, Anthony M. ; Deutsch, Joshua M. ; Saxton, William M.</creatorcontrib><description>The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.03.036</identifier><identifier>PMID: 27166813</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomechanical Phenomena ; Cytoplasm ; Cytoplasmic Streaming ; Fluid dynamics ; Fluid mechanics ; Hydrodynamics ; Insects ; Kinesins - metabolism ; Mechanical Phenomena ; Microtubules - metabolism ; Models, Biological ; Molecular Machines, Motors, and Nanoscale Biophysics ; Movement ; Oocytes - cytology ; Reynolds number ; Viscosity</subject><ispartof>Biophysical journal, 2016-05, Vol.110 (9), p.2053-2065</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society May 10, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-623d430dd3f7b75c9687e6174c281e74cfbc5fd7997616d252632027c04a70443</citedby><cites>FETCH-LOGICAL-c545t-623d430dd3f7b75c9687e6174c281e74cfbc5fd7997616d252632027c04a70443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939475/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349516301217$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27166813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteith, Corey E.</creatorcontrib><creatorcontrib>Brunner, Matthew E.</creatorcontrib><creatorcontrib>Djagaeva, Inna</creatorcontrib><creatorcontrib>Bielecki, Anthony M.</creatorcontrib><creatorcontrib>Deutsch, Joshua M.</creatorcontrib><creatorcontrib>Saxton, William M.</creatorcontrib><title>A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.</description><subject>Biomechanical Phenomena</subject><subject>Cytoplasm</subject><subject>Cytoplasmic Streaming</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Insects</subject><subject>Kinesins - metabolism</subject><subject>Mechanical Phenomena</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Machines, Motors, and Nanoscale Biophysics</subject><subject>Movement</subject><subject>Oocytes - cytology</subject><subject>Reynolds number</subject><subject>Viscosity</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7rj6A7xIwIuXHvOdjoIwjI6Ku3hQzyGdpGfTdCezSffI_nuzzLqoB6GgCuqpl6p6AXiO0RojLF4P6-4wrEkt14jWEA_ACnNGGoRa8RCsEEKioUzxM_CklAEhTDjCj8EZkViIFtMVcBt46e2ViaFMsE8Zbm_mdBhNmYKF3-bszRTi_g38EqIvITbvczj6CDdj2MfJxxmmHl4Gm9O8dMvoCzTRwZ0pM9yNS6jlmH6Wp-BRb8bin93lc_Bj9-H79lNz8fXj5-3morGc8bkRhDpGkXO0l53kVolWeoEls6TFvqa-s7x3UikpsHCEE0EJItIiZiRijJ6Ddyfdw9JN3tm6XzajPuQwmXyjkwn6704MV3qfjpopqpjkVeDVnUBO14svs55CsX4cTfRpKRrLViHKJaIVffkPOqQlx3pepRThimKCK4VPVP1QKdn398tgpG891IOuHupbDzWiNUSdefHnFfcTv02rwNsT4Osvj8FnXWzw0XoXsrezdin8R_4XrTusBw</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Monteith, Corey E.</creator><creator>Brunner, Matthew E.</creator><creator>Djagaeva, Inna</creator><creator>Bielecki, Anthony M.</creator><creator>Deutsch, Joshua M.</creator><creator>Saxton, William M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160510</creationdate><title>A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows</title><author>Monteith, Corey E. ; Brunner, Matthew E. ; Djagaeva, Inna ; Bielecki, Anthony M. ; Deutsch, Joshua M. ; Saxton, William M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-623d430dd3f7b75c9687e6174c281e74cfbc5fd7997616d252632027c04a70443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomechanical Phenomena</topic><topic>Cytoplasm</topic><topic>Cytoplasmic Streaming</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Insects</topic><topic>Kinesins - metabolism</topic><topic>Mechanical Phenomena</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Machines, Motors, and Nanoscale Biophysics</topic><topic>Movement</topic><topic>Oocytes - cytology</topic><topic>Reynolds number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteith, Corey E.</creatorcontrib><creatorcontrib>Brunner, Matthew E.</creatorcontrib><creatorcontrib>Djagaeva, Inna</creatorcontrib><creatorcontrib>Bielecki, Anthony M.</creatorcontrib><creatorcontrib>Deutsch, Joshua M.</creatorcontrib><creatorcontrib>Saxton, William M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteith, Corey E.</au><au>Brunner, Matthew E.</au><au>Djagaeva, Inna</au><au>Bielecki, Anthony M.</au><au>Deutsch, Joshua M.</au><au>Saxton, William M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>110</volume><issue>9</issue><spage>2053</spage><epage>2065</epage><pages>2053-2065</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27166813</pmid><doi>10.1016/j.bpj.2016.03.036</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2016-05, Vol.110 (9), p.2053-2065
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4939475
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biomechanical Phenomena
Cytoplasm
Cytoplasmic Streaming
Fluid dynamics
Fluid mechanics
Hydrodynamics
Insects
Kinesins - metabolism
Mechanical Phenomena
Microtubules - metabolism
Models, Biological
Molecular Machines, Motors, and Nanoscale Biophysics
Movement
Oocytes - cytology
Reynolds number
Viscosity
title A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanism%20for%20Cytoplasmic%20Streaming:%20Kinesin-Driven%20Alignment%20of%20Microtubules%20and%20Fast%20Fluid%20Flows&rft.jtitle=Biophysical%20journal&rft.au=Monteith,%20Corey%C2%A0E.&rft.date=2016-05-10&rft.volume=110&rft.issue=9&rft.spage=2053&rft.epage=2065&rft.pages=2053-2065&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.03.036&rft_dat=%3Cproquest_pubme%3E4072915611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792593121&rft_id=info:pmid/27166813&rft_els_id=S0006349516301217&rfr_iscdi=true