Prevalence of anti-malarial resistance genes in Dakar, Senegal from 2013 to 2014

To determine the impact of the introduction of artemisinin-based combination therapy (ACT) on parasite susceptibility, a molecular surveillance for antimalarial drug resistance was conducted on local isolates from the Hôpital Principal de Dakar between November 2013 and January 2014 and between Augu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Malaria journal 2016-07, Vol.15 (1), p.347-347, Article 347
Hauptverfasser: Boussaroque, Agathe, Fall, Bécaye, Madamet, Marylin, Wade, Khalifa Ababacar, Fall, Mansour, Nakoulima, Aminata, Fall, Khadidiatou Ba, Dionne, Pierre, Benoit, Nicolas, Diatta, Bakary, Diemé, Yaya, Wade, Boubacar, Pradines, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 1
container_start_page 347
container_title Malaria journal
container_volume 15
creator Boussaroque, Agathe
Fall, Bécaye
Madamet, Marylin
Wade, Khalifa Ababacar
Fall, Mansour
Nakoulima, Aminata
Fall, Khadidiatou Ba
Dionne, Pierre
Benoit, Nicolas
Diatta, Bakary
Diemé, Yaya
Wade, Boubacar
Pradines, Bruno
description To determine the impact of the introduction of artemisinin-based combination therapy (ACT) on parasite susceptibility, a molecular surveillance for antimalarial drug resistance was conducted on local isolates from the Hôpital Principal de Dakar between November 2013 and January 2014 and between August 2014 and December 2014. The prevalence of genetic polymorphisms in antimalarial resistance genes (pfcrt, pfmdr1, pfdhfr and pfdhps) was evaluated in 103 isolates. The chloroquine-resistant haplotypes CVIET and CVMET were identified in 31.4 and 3.9 % of the isolates, respectively. The frequency of the pfcrt K76T mutation was increased from 29.3 % in 2013-2014 to 43.2 % in 2014. The pfmdr1 N86Y and Y184F mutations were identified in 6.1 and 53.5 % of the isolates, respectively. The pfdhfr triple mutant (S108N, N51I and C59R) was detected in the majority of the isolates (82.3 %). The prevalence of quadruple mutants (pfdhfr S108N, N51I, C59R and pfdhps A437G) was 40.4 %. One isolate (1.1 %) harboured the pfdhps mutations A437G and K540E and the pfdhfr mutations S108N, N51I and C59R. Despite a decline in the prevalence of chloroquine resistance due to the official withdrawal of the drug and to the introduction of ACT, the spread of resistance to chloroquine has continued. Furthermore, susceptibility to amodiaquine may be decreased as a result of cross-resistance. The frequency of the pfmdr1 mutation N86Y declined while the Y184F mutation increased in prevalence, suggesting that selective pressure is acting on pfmdr1, leading to a high prevalence of mutations in these isolates and the lack of specific mutations. The 50.5 % prevalence of the pfmdr1 polymorphisms N86Y and Y184F suggests a decrease in lumefantrine susceptibility. Based on these results, intensive surveillance of ACT partner drugs must be conducted regularly in Senegal.
doi_str_mv 10.1186/s12936-016-1379-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A468884393</galeid><sourcerecordid>A468884393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-65170eb26c3553866afc16194755342139231a2cadf019124233880a358910b83</originalsourceid><addsrcrecordid>eNptUt9rFDEQXkSxtfoH-CILvlhwayaTny_C0aoVDiyozyGXy15Td5M22TvwvzfL1doWycMkk-_7ZuZjmuY1kBMAJT4UoBpFR0B0gFJ39ElzCEzyjirJn967HzQvSrkiBKSS9HlzQCXWLNOHzcVF9js7-Oh8m_rWxil0ox1sDnZosy-hTHb-2_joSxtie2Z_2fy-_V7fmwrpcxpbSgDbKc2RvWye9XYo_tVtPGp-fv704_S8W3778vV0sewcp2rqBAdJ_IoKh5yjEsL2DgTo2jFHRgE1RbDU2XVPQANlFFEpYpErDWSl8Kj5uNe93q5Gv3Y-TtkO5jqH0ebfJtlgHv7EcGk2aWeYRimAVIHjvcDlI9r5YmnmXB1GCKVwBxX77rZYTjdbXyYzhuL8MNjo07YYUKT6z7iSFfr2EfQqbXOsVswoqbminPxDVQ-9CbFPtUc3i5oFq0UVQ40VdfIfVD1rPwaXou9DzT8gwJ7gciol-_5uMCBmXhmzX5k6mzDzyhhaOW_uG3nH-Lsj-Ae1WbXG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807958250</pqid></control><display><type>article</type><title>Prevalence of anti-malarial resistance genes in Dakar, Senegal from 2013 to 2014</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Boussaroque, Agathe ; Fall, Bécaye ; Madamet, Marylin ; Wade, Khalifa Ababacar ; Fall, Mansour ; Nakoulima, Aminata ; Fall, Khadidiatou Ba ; Dionne, Pierre ; Benoit, Nicolas ; Diatta, Bakary ; Diemé, Yaya ; Wade, Boubacar ; Pradines, Bruno</creator><creatorcontrib>Boussaroque, Agathe ; Fall, Bécaye ; Madamet, Marylin ; Wade, Khalifa Ababacar ; Fall, Mansour ; Nakoulima, Aminata ; Fall, Khadidiatou Ba ; Dionne, Pierre ; Benoit, Nicolas ; Diatta, Bakary ; Diemé, Yaya ; Wade, Boubacar ; Pradines, Bruno</creatorcontrib><description>To determine the impact of the introduction of artemisinin-based combination therapy (ACT) on parasite susceptibility, a molecular surveillance for antimalarial drug resistance was conducted on local isolates from the Hôpital Principal de Dakar between November 2013 and January 2014 and between August 2014 and December 2014. The prevalence of genetic polymorphisms in antimalarial resistance genes (pfcrt, pfmdr1, pfdhfr and pfdhps) was evaluated in 103 isolates. The chloroquine-resistant haplotypes CVIET and CVMET were identified in 31.4 and 3.9 % of the isolates, respectively. The frequency of the pfcrt K76T mutation was increased from 29.3 % in 2013-2014 to 43.2 % in 2014. The pfmdr1 N86Y and Y184F mutations were identified in 6.1 and 53.5 % of the isolates, respectively. The pfdhfr triple mutant (S108N, N51I and C59R) was detected in the majority of the isolates (82.3 %). The prevalence of quadruple mutants (pfdhfr S108N, N51I, C59R and pfdhps A437G) was 40.4 %. One isolate (1.1 %) harboured the pfdhps mutations A437G and K540E and the pfdhfr mutations S108N, N51I and C59R. Despite a decline in the prevalence of chloroquine resistance due to the official withdrawal of the drug and to the introduction of ACT, the spread of resistance to chloroquine has continued. Furthermore, susceptibility to amodiaquine may be decreased as a result of cross-resistance. The frequency of the pfmdr1 mutation N86Y declined while the Y184F mutation increased in prevalence, suggesting that selective pressure is acting on pfmdr1, leading to a high prevalence of mutations in these isolates and the lack of specific mutations. The 50.5 % prevalence of the pfmdr1 polymorphisms N86Y and Y184F suggests a decrease in lumefantrine susceptibility. Based on these results, intensive surveillance of ACT partner drugs must be conducted regularly in Senegal.</description><identifier>ISSN: 1475-2875</identifier><identifier>EISSN: 1475-2875</identifier><identifier>DOI: 10.1186/s12936-016-1379-2</identifier><identifier>PMID: 27387549</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Amino Acid Substitution ; Amodiaquine - pharmacology ; Analysis ; Antimalarials - pharmacology ; Care and treatment ; Chloroquine - pharmacology ; Drug Resistance ; Genes, Protozoan ; Genetic aspects ; Genetic polymorphisms ; Human health and pathology ; Humans ; Infectious diseases ; Life Sciences ; Malaria ; Membrane Transport Proteins - genetics ; Multidrug Resistance-Associated Proteins - genetics ; Peptide Synthases - genetics ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - genetics ; Plasmodium falciparum - isolation &amp; purification ; Polymorphism, Genetic ; Prevalence ; Prevalence studies (Epidemiology) ; Protozoan Proteins - genetics ; Senegal ; Tetrahydrofolate Dehydrogenase - genetics</subject><ispartof>Malaria journal, 2016-07, Vol.15 (1), p.347-347, Article 347</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-65170eb26c3553866afc16194755342139231a2cadf019124233880a358910b83</citedby><cites>FETCH-LOGICAL-c528t-65170eb26c3553866afc16194755342139231a2cadf019124233880a358910b83</cites><orcidid>0000-0002-2360-3803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937610/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937610/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27387549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01466883$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boussaroque, Agathe</creatorcontrib><creatorcontrib>Fall, Bécaye</creatorcontrib><creatorcontrib>Madamet, Marylin</creatorcontrib><creatorcontrib>Wade, Khalifa Ababacar</creatorcontrib><creatorcontrib>Fall, Mansour</creatorcontrib><creatorcontrib>Nakoulima, Aminata</creatorcontrib><creatorcontrib>Fall, Khadidiatou Ba</creatorcontrib><creatorcontrib>Dionne, Pierre</creatorcontrib><creatorcontrib>Benoit, Nicolas</creatorcontrib><creatorcontrib>Diatta, Bakary</creatorcontrib><creatorcontrib>Diemé, Yaya</creatorcontrib><creatorcontrib>Wade, Boubacar</creatorcontrib><creatorcontrib>Pradines, Bruno</creatorcontrib><title>Prevalence of anti-malarial resistance genes in Dakar, Senegal from 2013 to 2014</title><title>Malaria journal</title><addtitle>Malar J</addtitle><description>To determine the impact of the introduction of artemisinin-based combination therapy (ACT) on parasite susceptibility, a molecular surveillance for antimalarial drug resistance was conducted on local isolates from the Hôpital Principal de Dakar between November 2013 and January 2014 and between August 2014 and December 2014. The prevalence of genetic polymorphisms in antimalarial resistance genes (pfcrt, pfmdr1, pfdhfr and pfdhps) was evaluated in 103 isolates. The chloroquine-resistant haplotypes CVIET and CVMET were identified in 31.4 and 3.9 % of the isolates, respectively. The frequency of the pfcrt K76T mutation was increased from 29.3 % in 2013-2014 to 43.2 % in 2014. The pfmdr1 N86Y and Y184F mutations were identified in 6.1 and 53.5 % of the isolates, respectively. The pfdhfr triple mutant (S108N, N51I and C59R) was detected in the majority of the isolates (82.3 %). The prevalence of quadruple mutants (pfdhfr S108N, N51I, C59R and pfdhps A437G) was 40.4 %. One isolate (1.1 %) harboured the pfdhps mutations A437G and K540E and the pfdhfr mutations S108N, N51I and C59R. Despite a decline in the prevalence of chloroquine resistance due to the official withdrawal of the drug and to the introduction of ACT, the spread of resistance to chloroquine has continued. Furthermore, susceptibility to amodiaquine may be decreased as a result of cross-resistance. The frequency of the pfmdr1 mutation N86Y declined while the Y184F mutation increased in prevalence, suggesting that selective pressure is acting on pfmdr1, leading to a high prevalence of mutations in these isolates and the lack of specific mutations. The 50.5 % prevalence of the pfmdr1 polymorphisms N86Y and Y184F suggests a decrease in lumefantrine susceptibility. Based on these results, intensive surveillance of ACT partner drugs must be conducted regularly in Senegal.</description><subject>Amino Acid Substitution</subject><subject>Amodiaquine - pharmacology</subject><subject>Analysis</subject><subject>Antimalarials - pharmacology</subject><subject>Care and treatment</subject><subject>Chloroquine - pharmacology</subject><subject>Drug Resistance</subject><subject>Genes, Protozoan</subject><subject>Genetic aspects</subject><subject>Genetic polymorphisms</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Life Sciences</subject><subject>Malaria</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Multidrug Resistance-Associated Proteins - genetics</subject><subject>Peptide Synthases - genetics</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - isolation &amp; purification</subject><subject>Polymorphism, Genetic</subject><subject>Prevalence</subject><subject>Prevalence studies (Epidemiology)</subject><subject>Protozoan Proteins - genetics</subject><subject>Senegal</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><issn>1475-2875</issn><issn>1475-2875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUt9rFDEQXkSxtfoH-CILvlhwayaTny_C0aoVDiyozyGXy15Td5M22TvwvzfL1doWycMkk-_7ZuZjmuY1kBMAJT4UoBpFR0B0gFJ39ElzCEzyjirJn967HzQvSrkiBKSS9HlzQCXWLNOHzcVF9js7-Oh8m_rWxil0ox1sDnZosy-hTHb-2_joSxtie2Z_2fy-_V7fmwrpcxpbSgDbKc2RvWye9XYo_tVtPGp-fv704_S8W3778vV0sewcp2rqBAdJ_IoKh5yjEsL2DgTo2jFHRgE1RbDU2XVPQANlFFEpYpErDWSl8Kj5uNe93q5Gv3Y-TtkO5jqH0ebfJtlgHv7EcGk2aWeYRimAVIHjvcDlI9r5YmnmXB1GCKVwBxX77rZYTjdbXyYzhuL8MNjo07YYUKT6z7iSFfr2EfQqbXOsVswoqbminPxDVQ-9CbFPtUc3i5oFq0UVQ40VdfIfVD1rPwaXou9DzT8gwJ7gciol-_5uMCBmXhmzX5k6mzDzyhhaOW_uG3nH-Lsj-Ae1WbXG</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>Boussaroque, Agathe</creator><creator>Fall, Bécaye</creator><creator>Madamet, Marylin</creator><creator>Wade, Khalifa Ababacar</creator><creator>Fall, Mansour</creator><creator>Nakoulima, Aminata</creator><creator>Fall, Khadidiatou Ba</creator><creator>Dionne, Pierre</creator><creator>Benoit, Nicolas</creator><creator>Diatta, Bakary</creator><creator>Diemé, Yaya</creator><creator>Wade, Boubacar</creator><creator>Pradines, Bruno</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2360-3803</orcidid></search><sort><creationdate>20160707</creationdate><title>Prevalence of anti-malarial resistance genes in Dakar, Senegal from 2013 to 2014</title><author>Boussaroque, Agathe ; Fall, Bécaye ; Madamet, Marylin ; Wade, Khalifa Ababacar ; Fall, Mansour ; Nakoulima, Aminata ; Fall, Khadidiatou Ba ; Dionne, Pierre ; Benoit, Nicolas ; Diatta, Bakary ; Diemé, Yaya ; Wade, Boubacar ; Pradines, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-65170eb26c3553866afc16194755342139231a2cadf019124233880a358910b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Substitution</topic><topic>Amodiaquine - pharmacology</topic><topic>Analysis</topic><topic>Antimalarials - pharmacology</topic><topic>Care and treatment</topic><topic>Chloroquine - pharmacology</topic><topic>Drug Resistance</topic><topic>Genes, Protozoan</topic><topic>Genetic aspects</topic><topic>Genetic polymorphisms</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Life Sciences</topic><topic>Malaria</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Multidrug Resistance-Associated Proteins - genetics</topic><topic>Peptide Synthases - genetics</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - isolation &amp; purification</topic><topic>Polymorphism, Genetic</topic><topic>Prevalence</topic><topic>Prevalence studies (Epidemiology)</topic><topic>Protozoan Proteins - genetics</topic><topic>Senegal</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boussaroque, Agathe</creatorcontrib><creatorcontrib>Fall, Bécaye</creatorcontrib><creatorcontrib>Madamet, Marylin</creatorcontrib><creatorcontrib>Wade, Khalifa Ababacar</creatorcontrib><creatorcontrib>Fall, Mansour</creatorcontrib><creatorcontrib>Nakoulima, Aminata</creatorcontrib><creatorcontrib>Fall, Khadidiatou Ba</creatorcontrib><creatorcontrib>Dionne, Pierre</creatorcontrib><creatorcontrib>Benoit, Nicolas</creatorcontrib><creatorcontrib>Diatta, Bakary</creatorcontrib><creatorcontrib>Diemé, Yaya</creatorcontrib><creatorcontrib>Wade, Boubacar</creatorcontrib><creatorcontrib>Pradines, Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Malaria journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boussaroque, Agathe</au><au>Fall, Bécaye</au><au>Madamet, Marylin</au><au>Wade, Khalifa Ababacar</au><au>Fall, Mansour</au><au>Nakoulima, Aminata</au><au>Fall, Khadidiatou Ba</au><au>Dionne, Pierre</au><au>Benoit, Nicolas</au><au>Diatta, Bakary</au><au>Diemé, Yaya</au><au>Wade, Boubacar</au><au>Pradines, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevalence of anti-malarial resistance genes in Dakar, Senegal from 2013 to 2014</atitle><jtitle>Malaria journal</jtitle><addtitle>Malar J</addtitle><date>2016-07-07</date><risdate>2016</risdate><volume>15</volume><issue>1</issue><spage>347</spage><epage>347</epage><pages>347-347</pages><artnum>347</artnum><issn>1475-2875</issn><eissn>1475-2875</eissn><abstract>To determine the impact of the introduction of artemisinin-based combination therapy (ACT) on parasite susceptibility, a molecular surveillance for antimalarial drug resistance was conducted on local isolates from the Hôpital Principal de Dakar between November 2013 and January 2014 and between August 2014 and December 2014. The prevalence of genetic polymorphisms in antimalarial resistance genes (pfcrt, pfmdr1, pfdhfr and pfdhps) was evaluated in 103 isolates. The chloroquine-resistant haplotypes CVIET and CVMET were identified in 31.4 and 3.9 % of the isolates, respectively. The frequency of the pfcrt K76T mutation was increased from 29.3 % in 2013-2014 to 43.2 % in 2014. The pfmdr1 N86Y and Y184F mutations were identified in 6.1 and 53.5 % of the isolates, respectively. The pfdhfr triple mutant (S108N, N51I and C59R) was detected in the majority of the isolates (82.3 %). The prevalence of quadruple mutants (pfdhfr S108N, N51I, C59R and pfdhps A437G) was 40.4 %. One isolate (1.1 %) harboured the pfdhps mutations A437G and K540E and the pfdhfr mutations S108N, N51I and C59R. Despite a decline in the prevalence of chloroquine resistance due to the official withdrawal of the drug and to the introduction of ACT, the spread of resistance to chloroquine has continued. Furthermore, susceptibility to amodiaquine may be decreased as a result of cross-resistance. The frequency of the pfmdr1 mutation N86Y declined while the Y184F mutation increased in prevalence, suggesting that selective pressure is acting on pfmdr1, leading to a high prevalence of mutations in these isolates and the lack of specific mutations. The 50.5 % prevalence of the pfmdr1 polymorphisms N86Y and Y184F suggests a decrease in lumefantrine susceptibility. Based on these results, intensive surveillance of ACT partner drugs must be conducted regularly in Senegal.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27387549</pmid><doi>10.1186/s12936-016-1379-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2360-3803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2875
ispartof Malaria journal, 2016-07, Vol.15 (1), p.347-347, Article 347
issn 1475-2875
1475-2875
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937610
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; PubMed Central
subjects Amino Acid Substitution
Amodiaquine - pharmacology
Analysis
Antimalarials - pharmacology
Care and treatment
Chloroquine - pharmacology
Drug Resistance
Genes, Protozoan
Genetic aspects
Genetic polymorphisms
Human health and pathology
Humans
Infectious diseases
Life Sciences
Malaria
Membrane Transport Proteins - genetics
Multidrug Resistance-Associated Proteins - genetics
Peptide Synthases - genetics
Plasmodium falciparum
Plasmodium falciparum - drug effects
Plasmodium falciparum - genetics
Plasmodium falciparum - isolation & purification
Polymorphism, Genetic
Prevalence
Prevalence studies (Epidemiology)
Protozoan Proteins - genetics
Senegal
Tetrahydrofolate Dehydrogenase - genetics
title Prevalence of anti-malarial resistance genes in Dakar, Senegal from 2013 to 2014
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevalence%20of%20anti-malarial%20resistance%20genes%20in%20Dakar,%20Senegal%20from%202013%20to%202014&rft.jtitle=Malaria%20journal&rft.au=Boussaroque,%20Agathe&rft.date=2016-07-07&rft.volume=15&rft.issue=1&rft.spage=347&rft.epage=347&rft.pages=347-347&rft.artnum=347&rft.issn=1475-2875&rft.eissn=1475-2875&rft_id=info:doi/10.1186/s12936-016-1379-2&rft_dat=%3Cgale_pubme%3EA468884393%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807958250&rft_id=info:pmid/27387549&rft_galeid=A468884393&rfr_iscdi=true