A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics

Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2016-07, Vol.15 (7), p.2462-2475
Hauptverfasser: Wang, Xiaoshi, Yuan, Zuo-Fei, Fan, Jing, Karch, Kelly R., Ball, Lauren E., Denu, John M., Garcia, Benjamin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2475
container_issue 7
container_start_page 2462
container_title Molecular & cellular proteomics
container_volume 15
creator Wang, Xiaoshi
Yuan, Zuo-Fei
Fan, Jing
Karch, Kelly R.
Ball, Lauren E.
Denu, John M.
Garcia, Benjamin A.
description Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available. Here, we have developed an approach to isotopically label O-GlcNAc modifications on proteins by producing 13C-labeled UDP-GlcNAc from 13C6-glucose via the hexosamine biosynthetic pathway. This metabolic labeling was combined with quantitative mass spectrometry-based proteomics to determine protein O-GlcNAcylation turnover rates. First, an efficient enrichment method for O-GlcNAc peptides was developed with the use of phenylboronic acid solid-phase extraction and anhydrous DMSO. The near stoichiometry reaction between the diol of GlcNAc and boronic acid dramatically improved the enrichment efficiency. Additionally, our kinetic model for turnover rates integrates both metabolomic and proteomic data, which increase the accuracy of the turnover rate estimation. Other advantages of this metabolic labeling method include in vivo application, direct labeling of the O-GlcNAc sites and higher confidence for site identification. Concentrating only on nuclear localized GlcNAc modified proteins, we are able to identify 105 O-GlcNAc peptides on 42 proteins and determine turnover rates of 20 O-GlcNAc peptides from 14 proteins extracted from HeLa nuclei. In general, we found O-GlcNAcylation turnover rates are slower than those published for phosphorylation or acetylation. Nevertheless, the rates widely varied depending on both the protein and the residue modified. We believe this methodology can be broadly applied to reveal turnovers/dynamics of protein O-GlcNAcylation from different biological states and will provide more information on the significance of O-GlcNAcylation, enabling us to study the temporal dynamics of this critical modification for the first time.
doi_str_mv 10.1074/mcp.O115.049627
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620335295</els_id><sourcerecordid>1801434612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-4d9902eb9b640688d4377b07fa4f9fd5c24cb8f9bc9d5d60dff5e07e3785a3cd3</originalsourceid><addsrcrecordid>eNqNkc9vFCEUx4nR2B969mY4epktzMAwXEw2rbYmtVujnpGBR8XMwArsJvvfy2brRg8mXoDkffjmvfdB6BUlC0oEu5jNerGilC8Ik30rnqBTyjveSDawp8e36E_QWc4_CGkJFfw5OmkFpYwxeYq-LfFd3MKEP210KL7o4reAP-qc8ec1mJLiDCXt8P2ki4tpxvXAV1AgzT748IDvUyzgA14115O5W5pdBX0M-GoX9OxNfoGeOT1lePl4n6Ov7999ubxpblfXHy6Xt42p_ZWGWSlJC6Mce0b6YbCsE2IkwmnmpLPctMyMg5OjkZbbnljnOBABnRi47oztztHbQ-56M85gDYSS9KTWyc867VTUXv1dCf67eohbxWQnOBU14M1jQIo_N5CLmn02ME06QNxkRQcy9IPs2vZ_UMo61tM9enFATYo5J3DHjihRe4WqKlR7heqgsP54_ecgR_63swrIAwB1nVsPSWXjIRiwPlVjykb_z_BfDcWtHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801434612</pqid></control><display><type>article</type><title>A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Xiaoshi ; Yuan, Zuo-Fei ; Fan, Jing ; Karch, Kelly R. ; Ball, Lauren E. ; Denu, John M. ; Garcia, Benjamin A.</creator><creatorcontrib>Wang, Xiaoshi ; Yuan, Zuo-Fei ; Fan, Jing ; Karch, Kelly R. ; Ball, Lauren E. ; Denu, John M. ; Garcia, Benjamin A.</creatorcontrib><description>Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available. Here, we have developed an approach to isotopically label O-GlcNAc modifications on proteins by producing 13C-labeled UDP-GlcNAc from 13C6-glucose via the hexosamine biosynthetic pathway. This metabolic labeling was combined with quantitative mass spectrometry-based proteomics to determine protein O-GlcNAcylation turnover rates. First, an efficient enrichment method for O-GlcNAc peptides was developed with the use of phenylboronic acid solid-phase extraction and anhydrous DMSO. The near stoichiometry reaction between the diol of GlcNAc and boronic acid dramatically improved the enrichment efficiency. Additionally, our kinetic model for turnover rates integrates both metabolomic and proteomic data, which increase the accuracy of the turnover rate estimation. Other advantages of this metabolic labeling method include in vivo application, direct labeling of the O-GlcNAc sites and higher confidence for site identification. Concentrating only on nuclear localized GlcNAc modified proteins, we are able to identify 105 O-GlcNAc peptides on 42 proteins and determine turnover rates of 20 O-GlcNAc peptides from 14 proteins extracted from HeLa nuclei. In general, we found O-GlcNAcylation turnover rates are slower than those published for phosphorylation or acetylation. Nevertheless, the rates widely varied depending on both the protein and the residue modified. We believe this methodology can be broadly applied to reveal turnovers/dynamics of protein O-GlcNAcylation from different biological states and will provide more information on the significance of O-GlcNAcylation, enabling us to study the temporal dynamics of this critical modification for the first time.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.O115.049627</identifier><identifier>PMID: 27114449</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Boronic Acids - chemistry ; Chromatography, Liquid - methods ; Glycosylation ; HeLa Cells ; Humans ; Isotope Labeling ; Protein Processing, Post-Translational ; Proteome - analysis ; Proteome - chemistry ; Proteomics - methods ; Spectrometry, Mass, Electrospray Ionization - methods ; Technological Innovation and Resources</subject><ispartof>Molecular &amp; cellular proteomics, 2016-07, Vol.15 (7), p.2462-2475</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-4d9902eb9b640688d4377b07fa4f9fd5c24cb8f9bc9d5d60dff5e07e3785a3cd3</citedby><cites>FETCH-LOGICAL-c476t-4d9902eb9b640688d4377b07fa4f9fd5c24cb8f9bc9d5d60dff5e07e3785a3cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937517/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937517/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27114449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoshi</creatorcontrib><creatorcontrib>Yuan, Zuo-Fei</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Karch, Kelly R.</creatorcontrib><creatorcontrib>Ball, Lauren E.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><title>A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available. Here, we have developed an approach to isotopically label O-GlcNAc modifications on proteins by producing 13C-labeled UDP-GlcNAc from 13C6-glucose via the hexosamine biosynthetic pathway. This metabolic labeling was combined with quantitative mass spectrometry-based proteomics to determine protein O-GlcNAcylation turnover rates. First, an efficient enrichment method for O-GlcNAc peptides was developed with the use of phenylboronic acid solid-phase extraction and anhydrous DMSO. The near stoichiometry reaction between the diol of GlcNAc and boronic acid dramatically improved the enrichment efficiency. Additionally, our kinetic model for turnover rates integrates both metabolomic and proteomic data, which increase the accuracy of the turnover rate estimation. Other advantages of this metabolic labeling method include in vivo application, direct labeling of the O-GlcNAc sites and higher confidence for site identification. Concentrating only on nuclear localized GlcNAc modified proteins, we are able to identify 105 O-GlcNAc peptides on 42 proteins and determine turnover rates of 20 O-GlcNAc peptides from 14 proteins extracted from HeLa nuclei. In general, we found O-GlcNAcylation turnover rates are slower than those published for phosphorylation or acetylation. Nevertheless, the rates widely varied depending on both the protein and the residue modified. We believe this methodology can be broadly applied to reveal turnovers/dynamics of protein O-GlcNAcylation from different biological states and will provide more information on the significance of O-GlcNAcylation, enabling us to study the temporal dynamics of this critical modification for the first time.</description><subject>Boronic Acids - chemistry</subject><subject>Chromatography, Liquid - methods</subject><subject>Glycosylation</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Isotope Labeling</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteome - analysis</subject><subject>Proteome - chemistry</subject><subject>Proteomics - methods</subject><subject>Spectrometry, Mass, Electrospray Ionization - methods</subject><subject>Technological Innovation and Resources</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9vFCEUx4nR2B969mY4epktzMAwXEw2rbYmtVujnpGBR8XMwArsJvvfy2brRg8mXoDkffjmvfdB6BUlC0oEu5jNerGilC8Ik30rnqBTyjveSDawp8e36E_QWc4_CGkJFfw5OmkFpYwxeYq-LfFd3MKEP210KL7o4reAP-qc8ec1mJLiDCXt8P2ki4tpxvXAV1AgzT748IDvUyzgA14115O5W5pdBX0M-GoX9OxNfoGeOT1lePl4n6Ov7999ubxpblfXHy6Xt42p_ZWGWSlJC6Mce0b6YbCsE2IkwmnmpLPctMyMg5OjkZbbnljnOBABnRi47oztztHbQ-56M85gDYSS9KTWyc867VTUXv1dCf67eohbxWQnOBU14M1jQIo_N5CLmn02ME06QNxkRQcy9IPs2vZ_UMo61tM9enFATYo5J3DHjihRe4WqKlR7heqgsP54_ecgR_63swrIAwB1nVsPSWXjIRiwPlVjykb_z_BfDcWtHw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Wang, Xiaoshi</creator><creator>Yuan, Zuo-Fei</creator><creator>Fan, Jing</creator><creator>Karch, Kelly R.</creator><creator>Ball, Lauren E.</creator><creator>Denu, John M.</creator><creator>Garcia, Benjamin A.</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20160701</creationdate><title>A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics</title><author>Wang, Xiaoshi ; Yuan, Zuo-Fei ; Fan, Jing ; Karch, Kelly R. ; Ball, Lauren E. ; Denu, John M. ; Garcia, Benjamin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-4d9902eb9b640688d4377b07fa4f9fd5c24cb8f9bc9d5d60dff5e07e3785a3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boronic Acids - chemistry</topic><topic>Chromatography, Liquid - methods</topic><topic>Glycosylation</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Isotope Labeling</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteome - analysis</topic><topic>Proteome - chemistry</topic><topic>Proteomics - methods</topic><topic>Spectrometry, Mass, Electrospray Ionization - methods</topic><topic>Technological Innovation and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoshi</creatorcontrib><creatorcontrib>Yuan, Zuo-Fei</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Karch, Kelly R.</creatorcontrib><creatorcontrib>Ball, Lauren E.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoshi</au><au>Yuan, Zuo-Fei</au><au>Fan, Jing</au><au>Karch, Kelly R.</au><au>Ball, Lauren E.</au><au>Denu, John M.</au><au>Garcia, Benjamin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>15</volume><issue>7</issue><spage>2462</spage><epage>2475</epage><pages>2462-2475</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available. Here, we have developed an approach to isotopically label O-GlcNAc modifications on proteins by producing 13C-labeled UDP-GlcNAc from 13C6-glucose via the hexosamine biosynthetic pathway. This metabolic labeling was combined with quantitative mass spectrometry-based proteomics to determine protein O-GlcNAcylation turnover rates. First, an efficient enrichment method for O-GlcNAc peptides was developed with the use of phenylboronic acid solid-phase extraction and anhydrous DMSO. The near stoichiometry reaction between the diol of GlcNAc and boronic acid dramatically improved the enrichment efficiency. Additionally, our kinetic model for turnover rates integrates both metabolomic and proteomic data, which increase the accuracy of the turnover rate estimation. Other advantages of this metabolic labeling method include in vivo application, direct labeling of the O-GlcNAc sites and higher confidence for site identification. Concentrating only on nuclear localized GlcNAc modified proteins, we are able to identify 105 O-GlcNAc peptides on 42 proteins and determine turnover rates of 20 O-GlcNAc peptides from 14 proteins extracted from HeLa nuclei. In general, we found O-GlcNAcylation turnover rates are slower than those published for phosphorylation or acetylation. Nevertheless, the rates widely varied depending on both the protein and the residue modified. We believe this methodology can be broadly applied to reveal turnovers/dynamics of protein O-GlcNAcylation from different biological states and will provide more information on the significance of O-GlcNAcylation, enabling us to study the temporal dynamics of this critical modification for the first time.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27114449</pmid><doi>10.1074/mcp.O115.049627</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2016-07, Vol.15 (7), p.2462-2475
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937517
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Boronic Acids - chemistry
Chromatography, Liquid - methods
Glycosylation
HeLa Cells
Humans
Isotope Labeling
Protein Processing, Post-Translational
Proteome - analysis
Proteome - chemistry
Proteomics - methods
Spectrometry, Mass, Electrospray Ionization - methods
Technological Innovation and Resources
title A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Quantitative%20Mass%20Spectrometry%20Platform%20for%20Determining%20Protein%20O-GlcNAcylation%20Dynamics&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Wang,%20Xiaoshi&rft.date=2016-07-01&rft.volume=15&rft.issue=7&rft.spage=2462&rft.epage=2475&rft.pages=2462-2475&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.O115.049627&rft_dat=%3Cproquest_pubme%3E1801434612%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801434612&rft_id=info:pmid/27114449&rft_els_id=S1535947620335295&rfr_iscdi=true