Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes

RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Inste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2016-07, Vol.44 (12), p.5849-5860
Hauptverfasser: Carter, Ashley R, Seaberg, Maasa H, Fan, Hsiu-Fang, Sun, Gang, Wilds, Christopher J, Li, Hung-Wen, Perkins, Thomas T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5860
container_issue 12
container_start_page 5849
container_title Nucleic acids research
container_volume 44
creator Carter, Ashley R
Seaberg, Maasa H
Fan, Hsiu-Fang
Sun, Gang
Wilds, Christopher J
Li, Hung-Wen
Perkins, Thomas T
description RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.
doi_str_mv 10.1093/nar/gkw445
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803791486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</originalsourceid><addsrcrecordid>eNpVkclOwzAQhi0EglK48AAoR4QU8JY4uSCVskoVSCxHZDnOBAyJXewU6Ntj1FLBaaSZf_5ZPoT2CD4iuGTHVvnj57dPzrM1NCAspykvc7qOBpjhLCWYF1toO4RXjAknGd9EW1RQinmeDdDTPbzPwGpIa5iCrcH2iVXWddCDT4NWLSTa2cb5TvXGWdUm9dyqzuiQuCYxtjYfpp7F9B3o0_FZenYzig3dtIUvCDtoo1FtgN1lHKLHi_OH8VU6ub28Ho8mqWai6FOqKGSCMsrzqsnrCirCG8JFUZSaFBmtBKkySppccFbFNBa6oEJgqkmJRYnZEJ0sfKezqoNaxyu8auXUm075uXTKyP8Va17ks_uQvGSC0TIaHCwNvIv_CL3sTNDQtsqCmwVJCsxESXiRR-nhQqq9C8FDsxpDsPzhISMPueARxft_F1tJfwGwb95eiAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803791486</pqid></control><display><type>article</type><title>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Carter, Ashley R ; Seaberg, Maasa H ; Fan, Hsiu-Fang ; Sun, Gang ; Wilds, Christopher J ; Li, Hung-Wen ; Perkins, Thomas T</creator><creatorcontrib>Carter, Ashley R ; Seaberg, Maasa H ; Fan, Hsiu-Fang ; Sun, Gang ; Wilds, Christopher J ; Li, Hung-Wen ; Perkins, Thomas T</creatorcontrib><description>RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkw445</identifier><identifier>PMID: 27220465</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Diphosphate - analogs &amp; derivatives ; Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Adenylyl Imidodiphosphate - chemistry ; Adenylyl Imidodiphosphate - metabolism ; Binding Sites ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Exodeoxyribonuclease V - chemistry ; Exodeoxyribonuclease V - genetics ; Exodeoxyribonuclease V - metabolism ; Gene Expression ; Kinetics ; Nucleic Acid Conformation ; Nucleic Acid Enzymes ; Protein Binding ; Protein Conformation</subject><ispartof>Nucleic acids research, 2016-07, Vol.44 (12), p.5849-5860</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</citedby><cites>FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27220465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Ashley R</creatorcontrib><creatorcontrib>Seaberg, Maasa H</creatorcontrib><creatorcontrib>Fan, Hsiu-Fang</creatorcontrib><creatorcontrib>Sun, Gang</creatorcontrib><creatorcontrib>Wilds, Christopher J</creatorcontrib><creatorcontrib>Li, Hung-Wen</creatorcontrib><creatorcontrib>Perkins, Thomas T</creatorcontrib><title>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.</description><subject>Adenosine Diphosphate - analogs &amp; derivatives</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenylyl Imidodiphosphate - chemistry</subject><subject>Adenylyl Imidodiphosphate - metabolism</subject><subject>Binding Sites</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Exodeoxyribonuclease V - chemistry</subject><subject>Exodeoxyribonuclease V - genetics</subject><subject>Exodeoxyribonuclease V - metabolism</subject><subject>Gene Expression</subject><subject>Kinetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Enzymes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkclOwzAQhi0EglK48AAoR4QU8JY4uSCVskoVSCxHZDnOBAyJXewU6Ntj1FLBaaSZf_5ZPoT2CD4iuGTHVvnj57dPzrM1NCAspykvc7qOBpjhLCWYF1toO4RXjAknGd9EW1RQinmeDdDTPbzPwGpIa5iCrcH2iVXWddCDT4NWLSTa2cb5TvXGWdUm9dyqzuiQuCYxtjYfpp7F9B3o0_FZenYzig3dtIUvCDtoo1FtgN1lHKLHi_OH8VU6ub28Ho8mqWai6FOqKGSCMsrzqsnrCirCG8JFUZSaFBmtBKkySppccFbFNBa6oEJgqkmJRYnZEJ0sfKezqoNaxyu8auXUm075uXTKyP8Va17ks_uQvGSC0TIaHCwNvIv_CL3sTNDQtsqCmwVJCsxESXiRR-nhQqq9C8FDsxpDsPzhISMPueARxft_F1tJfwGwb95eiAc</recordid><startdate>20160708</startdate><enddate>20160708</enddate><creator>Carter, Ashley R</creator><creator>Seaberg, Maasa H</creator><creator>Fan, Hsiu-Fang</creator><creator>Sun, Gang</creator><creator>Wilds, Christopher J</creator><creator>Li, Hung-Wen</creator><creator>Perkins, Thomas T</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160708</creationdate><title>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</title><author>Carter, Ashley R ; Seaberg, Maasa H ; Fan, Hsiu-Fang ; Sun, Gang ; Wilds, Christopher J ; Li, Hung-Wen ; Perkins, Thomas T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Diphosphate - analogs &amp; derivatives</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenylyl Imidodiphosphate - chemistry</topic><topic>Adenylyl Imidodiphosphate - metabolism</topic><topic>Binding Sites</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Exodeoxyribonuclease V - chemistry</topic><topic>Exodeoxyribonuclease V - genetics</topic><topic>Exodeoxyribonuclease V - metabolism</topic><topic>Gene Expression</topic><topic>Kinetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Enzymes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Ashley R</creatorcontrib><creatorcontrib>Seaberg, Maasa H</creatorcontrib><creatorcontrib>Fan, Hsiu-Fang</creatorcontrib><creatorcontrib>Sun, Gang</creatorcontrib><creatorcontrib>Wilds, Christopher J</creatorcontrib><creatorcontrib>Li, Hung-Wen</creatorcontrib><creatorcontrib>Perkins, Thomas T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Ashley R</au><au>Seaberg, Maasa H</au><au>Fan, Hsiu-Fang</au><au>Sun, Gang</au><au>Wilds, Christopher J</au><au>Li, Hung-Wen</au><au>Perkins, Thomas T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2016-07-08</date><risdate>2016</risdate><volume>44</volume><issue>12</issue><spage>5849</spage><epage>5860</epage><pages>5849-5860</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27220465</pmid><doi>10.1093/nar/gkw445</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2016-07, Vol.44 (12), p.5849-5860
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937329
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Diphosphate - analogs & derivatives
Adenosine Diphosphate - chemistry
Adenosine Diphosphate - metabolism
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Adenylyl Imidodiphosphate - chemistry
Adenylyl Imidodiphosphate - metabolism
Binding Sites
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Exodeoxyribonuclease V - chemistry
Exodeoxyribonuclease V - genetics
Exodeoxyribonuclease V - metabolism
Gene Expression
Kinetics
Nucleic Acid Conformation
Nucleic Acid Enzymes
Protein Binding
Protein Conformation
title Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence-dependent%20nanometer-scale%20conformational%20dynamics%20of%20individual%20RecBCD-DNA%20complexes&rft.jtitle=Nucleic%20acids%20research&rft.au=Carter,%20Ashley%20R&rft.date=2016-07-08&rft.volume=44&rft.issue=12&rft.spage=5849&rft.epage=5860&rft.pages=5849-5860&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkw445&rft_dat=%3Cproquest_pubme%3E1803791486%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803791486&rft_id=info:pmid/27220465&rfr_iscdi=true