Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes
RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Inste...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2016-07, Vol.44 (12), p.5849-5860 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5860 |
---|---|
container_issue | 12 |
container_start_page | 5849 |
container_title | Nucleic acids research |
container_volume | 44 |
creator | Carter, Ashley R Seaberg, Maasa H Fan, Hsiu-Fang Sun, Gang Wilds, Christopher J Li, Hung-Wen Perkins, Thomas T |
description | RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket. |
doi_str_mv | 10.1093/nar/gkw445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803791486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</originalsourceid><addsrcrecordid>eNpVkclOwzAQhi0EglK48AAoR4QU8JY4uSCVskoVSCxHZDnOBAyJXewU6Ntj1FLBaaSZf_5ZPoT2CD4iuGTHVvnj57dPzrM1NCAspykvc7qOBpjhLCWYF1toO4RXjAknGd9EW1RQinmeDdDTPbzPwGpIa5iCrcH2iVXWddCDT4NWLSTa2cb5TvXGWdUm9dyqzuiQuCYxtjYfpp7F9B3o0_FZenYzig3dtIUvCDtoo1FtgN1lHKLHi_OH8VU6ub28Ho8mqWai6FOqKGSCMsrzqsnrCirCG8JFUZSaFBmtBKkySppccFbFNBa6oEJgqkmJRYnZEJ0sfKezqoNaxyu8auXUm075uXTKyP8Va17ks_uQvGSC0TIaHCwNvIv_CL3sTNDQtsqCmwVJCsxESXiRR-nhQqq9C8FDsxpDsPzhISMPueARxft_F1tJfwGwb95eiAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803791486</pqid></control><display><type>article</type><title>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Carter, Ashley R ; Seaberg, Maasa H ; Fan, Hsiu-Fang ; Sun, Gang ; Wilds, Christopher J ; Li, Hung-Wen ; Perkins, Thomas T</creator><creatorcontrib>Carter, Ashley R ; Seaberg, Maasa H ; Fan, Hsiu-Fang ; Sun, Gang ; Wilds, Christopher J ; Li, Hung-Wen ; Perkins, Thomas T</creatorcontrib><description>RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkw445</identifier><identifier>PMID: 27220465</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Diphosphate - analogs & derivatives ; Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Adenylyl Imidodiphosphate - chemistry ; Adenylyl Imidodiphosphate - metabolism ; Binding Sites ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Exodeoxyribonuclease V - chemistry ; Exodeoxyribonuclease V - genetics ; Exodeoxyribonuclease V - metabolism ; Gene Expression ; Kinetics ; Nucleic Acid Conformation ; Nucleic Acid Enzymes ; Protein Binding ; Protein Conformation</subject><ispartof>Nucleic acids research, 2016-07, Vol.44 (12), p.5849-5860</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</citedby><cites>FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27220465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Ashley R</creatorcontrib><creatorcontrib>Seaberg, Maasa H</creatorcontrib><creatorcontrib>Fan, Hsiu-Fang</creatorcontrib><creatorcontrib>Sun, Gang</creatorcontrib><creatorcontrib>Wilds, Christopher J</creatorcontrib><creatorcontrib>Li, Hung-Wen</creatorcontrib><creatorcontrib>Perkins, Thomas T</creatorcontrib><title>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.</description><subject>Adenosine Diphosphate - analogs & derivatives</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenylyl Imidodiphosphate - chemistry</subject><subject>Adenylyl Imidodiphosphate - metabolism</subject><subject>Binding Sites</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Exodeoxyribonuclease V - chemistry</subject><subject>Exodeoxyribonuclease V - genetics</subject><subject>Exodeoxyribonuclease V - metabolism</subject><subject>Gene Expression</subject><subject>Kinetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Enzymes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkclOwzAQhi0EglK48AAoR4QU8JY4uSCVskoVSCxHZDnOBAyJXewU6Ntj1FLBaaSZf_5ZPoT2CD4iuGTHVvnj57dPzrM1NCAspykvc7qOBpjhLCWYF1toO4RXjAknGd9EW1RQinmeDdDTPbzPwGpIa5iCrcH2iVXWddCDT4NWLSTa2cb5TvXGWdUm9dyqzuiQuCYxtjYfpp7F9B3o0_FZenYzig3dtIUvCDtoo1FtgN1lHKLHi_OH8VU6ub28Ho8mqWai6FOqKGSCMsrzqsnrCirCG8JFUZSaFBmtBKkySppccFbFNBa6oEJgqkmJRYnZEJ0sfKezqoNaxyu8auXUm075uXTKyP8Va17ks_uQvGSC0TIaHCwNvIv_CL3sTNDQtsqCmwVJCsxESXiRR-nhQqq9C8FDsxpDsPzhISMPueARxft_F1tJfwGwb95eiAc</recordid><startdate>20160708</startdate><enddate>20160708</enddate><creator>Carter, Ashley R</creator><creator>Seaberg, Maasa H</creator><creator>Fan, Hsiu-Fang</creator><creator>Sun, Gang</creator><creator>Wilds, Christopher J</creator><creator>Li, Hung-Wen</creator><creator>Perkins, Thomas T</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160708</creationdate><title>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</title><author>Carter, Ashley R ; Seaberg, Maasa H ; Fan, Hsiu-Fang ; Sun, Gang ; Wilds, Christopher J ; Li, Hung-Wen ; Perkins, Thomas T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2a2e5723246bf6dbeb14f147889c1852b71b521f6743b47807c827702c1907903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Diphosphate - analogs & derivatives</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenylyl Imidodiphosphate - chemistry</topic><topic>Adenylyl Imidodiphosphate - metabolism</topic><topic>Binding Sites</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Exodeoxyribonuclease V - chemistry</topic><topic>Exodeoxyribonuclease V - genetics</topic><topic>Exodeoxyribonuclease V - metabolism</topic><topic>Gene Expression</topic><topic>Kinetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Enzymes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Ashley R</creatorcontrib><creatorcontrib>Seaberg, Maasa H</creatorcontrib><creatorcontrib>Fan, Hsiu-Fang</creatorcontrib><creatorcontrib>Sun, Gang</creatorcontrib><creatorcontrib>Wilds, Christopher J</creatorcontrib><creatorcontrib>Li, Hung-Wen</creatorcontrib><creatorcontrib>Perkins, Thomas T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Ashley R</au><au>Seaberg, Maasa H</au><au>Fan, Hsiu-Fang</au><au>Sun, Gang</au><au>Wilds, Christopher J</au><au>Li, Hung-Wen</au><au>Perkins, Thomas T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2016-07-08</date><risdate>2016</risdate><volume>44</volume><issue>12</issue><spage>5849</spage><epage>5860</epage><pages>5849-5860</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27220465</pmid><doi>10.1093/nar/gkw445</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2016-07, Vol.44 (12), p.5849-5860 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4937329 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Diphosphate - analogs & derivatives Adenosine Diphosphate - chemistry Adenosine Diphosphate - metabolism Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Adenylyl Imidodiphosphate - chemistry Adenylyl Imidodiphosphate - metabolism Binding Sites DNA - chemistry DNA - genetics DNA - metabolism DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Bacterial - metabolism Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Exodeoxyribonuclease V - chemistry Exodeoxyribonuclease V - genetics Exodeoxyribonuclease V - metabolism Gene Expression Kinetics Nucleic Acid Conformation Nucleic Acid Enzymes Protein Binding Protein Conformation |
title | Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence-dependent%20nanometer-scale%20conformational%20dynamics%20of%20individual%20RecBCD-DNA%20complexes&rft.jtitle=Nucleic%20acids%20research&rft.au=Carter,%20Ashley%20R&rft.date=2016-07-08&rft.volume=44&rft.issue=12&rft.spage=5849&rft.epage=5860&rft.pages=5849-5860&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkw445&rft_dat=%3Cproquest_pubme%3E1803791486%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803791486&rft_id=info:pmid/27220465&rfr_iscdi=true |