Quantum memristors

Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-07, Vol.6 (1), p.29507-29507, Article 29507
Hauptverfasser: Pfeiffer, P., Egusquiza, I. L., Di Ventra, M., Sanz, M., Solano, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29507
container_issue 1
container_start_page 29507
container_title Scientific reports
container_volume 6
creator Pfeiffer, P.
Egusquiza, I. L.
Di Ventra, M.
Sanz, M.
Solano, E.
description Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
doi_str_mv 10.1038/srep29507
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803790090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-77f313fd2704278c98dc931eda36e321b380acef34a6c1ab9acb23b5c2ee79c53</originalsourceid><addsrcrecordid>eNplkU1Lw0AQhhdRrNQe9AeI6EWF6H6lm70IUvyCggh6XjabSZuSZOvuRvDfuyW1VJ3LDMzDOzPvIHRE8DXBLLvxDpZUpljsoAOKeZpQRunuVj1AI-8XOEZKJSdyHw2oYBlJCTlAx6-dbkPXnDbQuMoH6_wh2it17WG0zkP0_nD_NnlKpi-Pz5O7aWL4OA2JECUjrCyowJyKzMisMJIRKDQbA6MkZxnWBkrG9dgQnUttcsry1FAAIU3Khui21112eQOFgTY4XaulqxrtvpTVlfrdaau5mtlPxSVjkmdR4KwXsD5UypsqgJkb27ZggiKMrFyJ0MV6irMfHfigmsobqGvdgu28IhlmQmIsV-j5H3RhO9dGDyJFKOWC8HGkLnvKOOuj-eVmY4LV6iNq85HInmyfuCF__I_AVQ_42Gpn4LZG_lP7Bmx_kv0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812247146</pqid></control><display><type>article</type><title>Quantum memristors</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Pfeiffer, P. ; Egusquiza, I. L. ; Di Ventra, M. ; Sanz, M. ; Solano, E.</creator><creatorcontrib>Pfeiffer, P. ; Egusquiza, I. L. ; Di Ventra, M. ; Sanz, M. ; Solano, E. ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep29507</identifier><identifier>PMID: 27381511</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1139 ; 639/766/483/481 ; Circuits ; Humanities and Social Sciences ; Information processing ; Information storage ; Mathematical functions ; MATHEMATICS AND COMPUTING ; multidisciplinary ; Science</subject><ispartof>Scientific reports, 2016-07, Vol.6 (1), p.29507-29507, Article 29507</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-77f313fd2704278c98dc931eda36e321b380acef34a6c1ab9acb23b5c2ee79c53</citedby><cites>FETCH-LOGICAL-c465t-77f313fd2704278c98dc931eda36e321b380acef34a6c1ab9acb23b5c2ee79c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933948/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933948/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27381511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1312950$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pfeiffer, P.</creatorcontrib><creatorcontrib>Egusquiza, I. L.</creatorcontrib><creatorcontrib>Di Ventra, M.</creatorcontrib><creatorcontrib>Sanz, M.</creatorcontrib><creatorcontrib>Solano, E.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Quantum memristors</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.</description><subject>639/766/483/1139</subject><subject>639/766/483/481</subject><subject>Circuits</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Information storage</subject><subject>Mathematical functions</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1Lw0AQhhdRrNQe9AeI6EWF6H6lm70IUvyCggh6XjabSZuSZOvuRvDfuyW1VJ3LDMzDOzPvIHRE8DXBLLvxDpZUpljsoAOKeZpQRunuVj1AI-8XOEZKJSdyHw2oYBlJCTlAx6-dbkPXnDbQuMoH6_wh2it17WG0zkP0_nD_NnlKpi-Pz5O7aWL4OA2JECUjrCyowJyKzMisMJIRKDQbA6MkZxnWBkrG9dgQnUttcsry1FAAIU3Khui21112eQOFgTY4XaulqxrtvpTVlfrdaau5mtlPxSVjkmdR4KwXsD5UypsqgJkb27ZggiKMrFyJ0MV6irMfHfigmsobqGvdgu28IhlmQmIsV-j5H3RhO9dGDyJFKOWC8HGkLnvKOOuj-eVmY4LV6iNq85HInmyfuCF__I_AVQ_42Gpn4LZG_lP7Bmx_kv0</recordid><startdate>20160706</startdate><enddate>20160706</enddate><creator>Pfeiffer, P.</creator><creator>Egusquiza, I. L.</creator><creator>Di Ventra, M.</creator><creator>Sanz, M.</creator><creator>Solano, E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160706</creationdate><title>Quantum memristors</title><author>Pfeiffer, P. ; Egusquiza, I. L. ; Di Ventra, M. ; Sanz, M. ; Solano, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-77f313fd2704278c98dc931eda36e321b380acef34a6c1ab9acb23b5c2ee79c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/483/1139</topic><topic>639/766/483/481</topic><topic>Circuits</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Information storage</topic><topic>Mathematical functions</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfeiffer, P.</creatorcontrib><creatorcontrib>Egusquiza, I. L.</creatorcontrib><creatorcontrib>Di Ventra, M.</creatorcontrib><creatorcontrib>Sanz, M.</creatorcontrib><creatorcontrib>Solano, E.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfeiffer, P.</au><au>Egusquiza, I. L.</au><au>Di Ventra, M.</au><au>Sanz, M.</au><au>Solano, E.</au><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum memristors</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-07-06</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>29507</spage><epage>29507</epage><pages>29507-29507</pages><artnum>29507</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27381511</pmid><doi>10.1038/srep29507</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-07, Vol.6 (1), p.29507-29507, Article 29507
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933948
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/766/483/1139
639/766/483/481
Circuits
Humanities and Social Sciences
Information processing
Information storage
Mathematical functions
MATHEMATICS AND COMPUTING
multidisciplinary
Science
title Quantum memristors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20memristors&rft.jtitle=Scientific%20reports&rft.au=Pfeiffer,%20P.&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20CA%20(United%20States)&rft.date=2016-07-06&rft.volume=6&rft.issue=1&rft.spage=29507&rft.epage=29507&rft.pages=29507-29507&rft.artnum=29507&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep29507&rft_dat=%3Cproquest_pubme%3E1803790090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812247146&rft_id=info:pmid/27381511&rfr_iscdi=true