Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse

The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understandi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-06, Vol.291 (23), p.12394-12407
Hauptverfasser: Nakamura, Yasuko, Morrow, Danielle H., Modgil, Amit, Huyghe, Deborah, Deeb, Tarek Z., Lumb, Michael J., Davies, Paul A., Moss, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12407
container_issue 23
container_start_page 12394
container_title The Journal of biological chemistry
container_volume 291
creator Nakamura, Yasuko
Morrow, Danielle H.
Modgil, Amit
Huyghe, Deborah
Deeb, Tarek Z.
Lumb, Michael J.
Davies, Paul A.
Moss, Stephen J.
description The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.
doi_str_mv 10.1074/jbc.M116.724443
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820356143</els_id><sourcerecordid>1793907762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</originalsourceid><addsrcrecordid>eNp1kctu1DAUQC0EokNhzQ55WaRm6lce3iClI2grWkC0ldhZjnNnxiWxg52MNPwJn4H4j34TrqZUsMAbL3x8_DgIvaRkTkkpjm4aM7-gtJiXTAjBH6EZJRXPeE6_PEYzQhjNJMurPfQsxhuShpD0KdpjJRGiFGyGfnwKfgTfW4MXax20GSHY73q03mG_xGdubRs7-rDFl1unhwgRX0frVljjD34DHR5Ou8kH67JRr1bQ4ttfWd1b55tp3IZkrY1t8WcwMCTLIb7aDoBrfHBSH9f160N8-5Phy6mZnB3xe-fN18w6fOGnCM_Rk6XuIry4n_fR9bu3V4vT7PzjydmiPs-MIIJnYIq8zU3RSFoVpWiXwFhF2oJQArRtjBGCkUbKPJeQl1ABYabgVUFZZQwnnO-jNzvvMDU9tAbcGHSnhmB7HbbKa6v-XXF2rVZ-o4TknFV5EhzcC4L_NkEcVW-jga7TDtJDFC0ll6QsC5bQox1qgo8xwPLhGErUXVCVgqq7oGoXNO149fftHvg_BRMgdwCkP9pYCCoaC85AawOYUbXe_lf-Gw79sgk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793907762</pqid></control><display><type>article</type><title>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Nakamura, Yasuko ; Morrow, Danielle H. ; Modgil, Amit ; Huyghe, Deborah ; Deeb, Tarek Z. ; Lumb, Michael J. ; Davies, Paul A. ; Moss, Stephen J.</creator><creatorcontrib>Nakamura, Yasuko ; Morrow, Danielle H. ; Modgil, Amit ; Huyghe, Deborah ; Deeb, Tarek Z. ; Lumb, Michael J. ; Davies, Paul A. ; Moss, Stephen J.</creatorcontrib><description>The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.724443</identifier><identifier>PMID: 27044742</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blotting, Western ; Electrophysiological Phenomena ; GABA receptor ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; HEK293 Cells ; Hippocampus - metabolism ; Hippocampus - physiology ; Humans ; Hydrogen-Ion Concentration ; Inhibitory Postsynaptic Potentials ; ion channel ; Mass Spectrometry ; mass spectrometry (MS) ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurobiology ; Neurons - metabolism ; Neurons - physiology ; Proteome - genetics ; Proteome - metabolism ; Proteomics - methods ; Receptors, GABA-A - genetics ; Receptors, GABA-A - metabolism ; synapse ; Synapses - metabolism ; Synapses - physiology</subject><ispartof>The Journal of biological chemistry, 2016-06, Vol.291 (23), p.12394-12407</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</citedby><cites>FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933285/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933285/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27044742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Yasuko</creatorcontrib><creatorcontrib>Morrow, Danielle H.</creatorcontrib><creatorcontrib>Modgil, Amit</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Deeb, Tarek Z.</creatorcontrib><creatorcontrib>Lumb, Michael J.</creatorcontrib><creatorcontrib>Davies, Paul A.</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><title>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Electrophysiological Phenomena</subject><subject>GABA receptor</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>HEK293 Cells</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Inhibitory Postsynaptic Potentials</subject><subject>ion channel</subject><subject>Mass Spectrometry</subject><subject>mass spectrometry (MS)</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Neurobiology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>Proteomics - methods</subject><subject>Receptors, GABA-A - genetics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>synapse</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUQC0EokNhzQ55WaRm6lce3iClI2grWkC0ldhZjnNnxiWxg52MNPwJn4H4j34TrqZUsMAbL3x8_DgIvaRkTkkpjm4aM7-gtJiXTAjBH6EZJRXPeE6_PEYzQhjNJMurPfQsxhuShpD0KdpjJRGiFGyGfnwKfgTfW4MXax20GSHY73q03mG_xGdubRs7-rDFl1unhwgRX0frVljjD34DHR5Ou8kH67JRr1bQ4ttfWd1b55tp3IZkrY1t8WcwMCTLIb7aDoBrfHBSH9f160N8-5Phy6mZnB3xe-fN18w6fOGnCM_Rk6XuIry4n_fR9bu3V4vT7PzjydmiPs-MIIJnYIq8zU3RSFoVpWiXwFhF2oJQArRtjBGCkUbKPJeQl1ABYabgVUFZZQwnnO-jNzvvMDU9tAbcGHSnhmB7HbbKa6v-XXF2rVZ-o4TknFV5EhzcC4L_NkEcVW-jga7TDtJDFC0ll6QsC5bQox1qgo8xwPLhGErUXVCVgqq7oGoXNO149fftHvg_BRMgdwCkP9pYCCoaC85AawOYUbXe_lf-Gw79sgk</recordid><startdate>20160603</startdate><enddate>20160603</enddate><creator>Nakamura, Yasuko</creator><creator>Morrow, Danielle H.</creator><creator>Modgil, Amit</creator><creator>Huyghe, Deborah</creator><creator>Deeb, Tarek Z.</creator><creator>Lumb, Michael J.</creator><creator>Davies, Paul A.</creator><creator>Moss, Stephen J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160603</creationdate><title>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</title><author>Nakamura, Yasuko ; Morrow, Danielle H. ; Modgil, Amit ; Huyghe, Deborah ; Deeb, Tarek Z. ; Lumb, Michael J. ; Davies, Paul A. ; Moss, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Electrophysiological Phenomena</topic><topic>GABA receptor</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>HEK293 Cells</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Inhibitory Postsynaptic Potentials</topic><topic>ion channel</topic><topic>Mass Spectrometry</topic><topic>mass spectrometry (MS)</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Neurobiology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>Proteomics - methods</topic><topic>Receptors, GABA-A - genetics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>synapse</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Yasuko</creatorcontrib><creatorcontrib>Morrow, Danielle H.</creatorcontrib><creatorcontrib>Modgil, Amit</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Deeb, Tarek Z.</creatorcontrib><creatorcontrib>Lumb, Michael J.</creatorcontrib><creatorcontrib>Davies, Paul A.</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Yasuko</au><au>Morrow, Danielle H.</au><au>Modgil, Amit</au><au>Huyghe, Deborah</au><au>Deeb, Tarek Z.</au><au>Lumb, Michael J.</au><au>Davies, Paul A.</au><au>Moss, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-06-03</date><risdate>2016</risdate><volume>291</volume><issue>23</issue><spage>12394</spage><epage>12407</epage><pages>12394-12407</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27044742</pmid><doi>10.1074/jbc.M116.724443</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-06, Vol.291 (23), p.12394-12407
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933285
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Blotting, Western
Electrophysiological Phenomena
GABA receptor
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
HEK293 Cells
Hippocampus - metabolism
Hippocampus - physiology
Humans
Hydrogen-Ion Concentration
Inhibitory Postsynaptic Potentials
ion channel
Mass Spectrometry
mass spectrometry (MS)
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Transgenic
Neurobiology
Neurons - metabolism
Neurons - physiology
Proteome - genetics
Proteome - metabolism
Proteomics - methods
Receptors, GABA-A - genetics
Receptors, GABA-A - metabolism
synapse
Synapses - metabolism
Synapses - physiology
title Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20Characterization%20of%20Inhibitory%20Synapses%20Using%20a%20Novel%20pHluorin-tagged%20%CE%B3-Aminobutyric%20Acid%20Receptor,%20Type%20A%20(GABAA),%20%CE%B12%20Subunit%20Knock-in%20Mouse&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Nakamura,%20Yasuko&rft.date=2016-06-03&rft.volume=291&rft.issue=23&rft.spage=12394&rft.epage=12407&rft.pages=12394-12407&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.724443&rft_dat=%3Cproquest_pubme%3E1793907762%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793907762&rft_id=info:pmid/27044742&rft_els_id=S0021925820356143&rfr_iscdi=true