Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse
The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understandi...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-06, Vol.291 (23), p.12394-12407 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12407 |
---|---|
container_issue | 23 |
container_start_page | 12394 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Nakamura, Yasuko Morrow, Danielle H. Modgil, Amit Huyghe, Deborah Deeb, Tarek Z. Lumb, Michael J. Davies, Paul A. Moss, Stephen J. |
description | The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses. |
doi_str_mv | 10.1074/jbc.M116.724443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820356143</els_id><sourcerecordid>1793907762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</originalsourceid><addsrcrecordid>eNp1kctu1DAUQC0EokNhzQ55WaRm6lce3iClI2grWkC0ldhZjnNnxiWxg52MNPwJn4H4j34TrqZUsMAbL3x8_DgIvaRkTkkpjm4aM7-gtJiXTAjBH6EZJRXPeE6_PEYzQhjNJMurPfQsxhuShpD0KdpjJRGiFGyGfnwKfgTfW4MXax20GSHY73q03mG_xGdubRs7-rDFl1unhwgRX0frVljjD34DHR5Ou8kH67JRr1bQ4ttfWd1b55tp3IZkrY1t8WcwMCTLIb7aDoBrfHBSH9f160N8-5Phy6mZnB3xe-fN18w6fOGnCM_Rk6XuIry4n_fR9bu3V4vT7PzjydmiPs-MIIJnYIq8zU3RSFoVpWiXwFhF2oJQArRtjBGCkUbKPJeQl1ABYabgVUFZZQwnnO-jNzvvMDU9tAbcGHSnhmB7HbbKa6v-XXF2rVZ-o4TknFV5EhzcC4L_NkEcVW-jga7TDtJDFC0ll6QsC5bQox1qgo8xwPLhGErUXVCVgqq7oGoXNO149fftHvg_BRMgdwCkP9pYCCoaC85AawOYUbXe_lf-Gw79sgk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793907762</pqid></control><display><type>article</type><title>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Nakamura, Yasuko ; Morrow, Danielle H. ; Modgil, Amit ; Huyghe, Deborah ; Deeb, Tarek Z. ; Lumb, Michael J. ; Davies, Paul A. ; Moss, Stephen J.</creator><creatorcontrib>Nakamura, Yasuko ; Morrow, Danielle H. ; Modgil, Amit ; Huyghe, Deborah ; Deeb, Tarek Z. ; Lumb, Michael J. ; Davies, Paul A. ; Moss, Stephen J.</creatorcontrib><description>The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.724443</identifier><identifier>PMID: 27044742</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blotting, Western ; Electrophysiological Phenomena ; GABA receptor ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; HEK293 Cells ; Hippocampus - metabolism ; Hippocampus - physiology ; Humans ; Hydrogen-Ion Concentration ; Inhibitory Postsynaptic Potentials ; ion channel ; Mass Spectrometry ; mass spectrometry (MS) ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurobiology ; Neurons - metabolism ; Neurons - physiology ; Proteome - genetics ; Proteome - metabolism ; Proteomics - methods ; Receptors, GABA-A - genetics ; Receptors, GABA-A - metabolism ; synapse ; Synapses - metabolism ; Synapses - physiology</subject><ispartof>The Journal of biological chemistry, 2016-06, Vol.291 (23), p.12394-12407</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</citedby><cites>FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933285/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933285/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27044742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Yasuko</creatorcontrib><creatorcontrib>Morrow, Danielle H.</creatorcontrib><creatorcontrib>Modgil, Amit</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Deeb, Tarek Z.</creatorcontrib><creatorcontrib>Lumb, Michael J.</creatorcontrib><creatorcontrib>Davies, Paul A.</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><title>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Electrophysiological Phenomena</subject><subject>GABA receptor</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>HEK293 Cells</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Inhibitory Postsynaptic Potentials</subject><subject>ion channel</subject><subject>Mass Spectrometry</subject><subject>mass spectrometry (MS)</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Neurobiology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>Proteomics - methods</subject><subject>Receptors, GABA-A - genetics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>synapse</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUQC0EokNhzQ55WaRm6lce3iClI2grWkC0ldhZjnNnxiWxg52MNPwJn4H4j34TrqZUsMAbL3x8_DgIvaRkTkkpjm4aM7-gtJiXTAjBH6EZJRXPeE6_PEYzQhjNJMurPfQsxhuShpD0KdpjJRGiFGyGfnwKfgTfW4MXax20GSHY73q03mG_xGdubRs7-rDFl1unhwgRX0frVljjD34DHR5Ou8kH67JRr1bQ4ttfWd1b55tp3IZkrY1t8WcwMCTLIb7aDoBrfHBSH9f160N8-5Phy6mZnB3xe-fN18w6fOGnCM_Rk6XuIry4n_fR9bu3V4vT7PzjydmiPs-MIIJnYIq8zU3RSFoVpWiXwFhF2oJQArRtjBGCkUbKPJeQl1ABYabgVUFZZQwnnO-jNzvvMDU9tAbcGHSnhmB7HbbKa6v-XXF2rVZ-o4TknFV5EhzcC4L_NkEcVW-jga7TDtJDFC0ll6QsC5bQox1qgo8xwPLhGErUXVCVgqq7oGoXNO149fftHvg_BRMgdwCkP9pYCCoaC85AawOYUbXe_lf-Gw79sgk</recordid><startdate>20160603</startdate><enddate>20160603</enddate><creator>Nakamura, Yasuko</creator><creator>Morrow, Danielle H.</creator><creator>Modgil, Amit</creator><creator>Huyghe, Deborah</creator><creator>Deeb, Tarek Z.</creator><creator>Lumb, Michael J.</creator><creator>Davies, Paul A.</creator><creator>Moss, Stephen J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160603</creationdate><title>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</title><author>Nakamura, Yasuko ; Morrow, Danielle H. ; Modgil, Amit ; Huyghe, Deborah ; Deeb, Tarek Z. ; Lumb, Michael J. ; Davies, Paul A. ; Moss, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4043-ec65d5c6b918674dfe2280d6010e1dbcc4420b99559e57e8e02c6386128cc3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Electrophysiological Phenomena</topic><topic>GABA receptor</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>HEK293 Cells</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Inhibitory Postsynaptic Potentials</topic><topic>ion channel</topic><topic>Mass Spectrometry</topic><topic>mass spectrometry (MS)</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Neurobiology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>Proteomics - methods</topic><topic>Receptors, GABA-A - genetics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>synapse</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Yasuko</creatorcontrib><creatorcontrib>Morrow, Danielle H.</creatorcontrib><creatorcontrib>Modgil, Amit</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Deeb, Tarek Z.</creatorcontrib><creatorcontrib>Lumb, Michael J.</creatorcontrib><creatorcontrib>Davies, Paul A.</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Yasuko</au><au>Morrow, Danielle H.</au><au>Modgil, Amit</au><au>Huyghe, Deborah</au><au>Deeb, Tarek Z.</au><au>Lumb, Michael J.</au><au>Davies, Paul A.</au><au>Moss, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-06-03</date><risdate>2016</risdate><volume>291</volume><issue>23</issue><spage>12394</spage><epage>12407</epage><pages>12394-12407</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1–3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27044742</pmid><doi>10.1074/jbc.M116.724443</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-06, Vol.291 (23), p.12394-12407 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933285 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Blotting, Western Electrophysiological Phenomena GABA receptor Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism HEK293 Cells Hippocampus - metabolism Hippocampus - physiology Humans Hydrogen-Ion Concentration Inhibitory Postsynaptic Potentials ion channel Mass Spectrometry mass spectrometry (MS) Mice, 129 Strain Mice, Inbred C57BL Mice, Transgenic Neurobiology Neurons - metabolism Neurons - physiology Proteome - genetics Proteome - metabolism Proteomics - methods Receptors, GABA-A - genetics Receptors, GABA-A - metabolism synapse Synapses - metabolism Synapses - physiology |
title | Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20Characterization%20of%20Inhibitory%20Synapses%20Using%20a%20Novel%20pHluorin-tagged%20%CE%B3-Aminobutyric%20Acid%20Receptor,%20Type%20A%20(GABAA),%20%CE%B12%20Subunit%20Knock-in%20Mouse&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Nakamura,%20Yasuko&rft.date=2016-06-03&rft.volume=291&rft.issue=23&rft.spage=12394&rft.epage=12407&rft.pages=12394-12407&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.724443&rft_dat=%3Cproquest_pubme%3E1793907762%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793907762&rft_id=info:pmid/27044742&rft_els_id=S0021925820356143&rfr_iscdi=true |