Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING

Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-07, Vol.291 (27), p.14324-14339
Hauptverfasser: Khan, Irfan, Crouch, Jack D, Bharti, Sanjay Kumar, Sommers, Joshua A, Carney, Sean M, Yakubovskaya, Elena, Garcia-Diaz, Miguel, Trakselis, Michael A, Brosh, Jr, Robert M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14339
container_issue 27
container_start_page 14324
container_title The Journal of biological chemistry
container_volume 291
creator Khan, Irfan
Crouch, Jack D
Bharti, Sanjay Kumar
Sommers, Joshua A
Carney, Sean M
Yakubovskaya, Elena
Garcia-Diaz, Miguel
Trakselis, Michael A
Brosh, Jr, Robert M
description Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.
doi_str_mv 10.1074/jbc.M115.712026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801429747</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-d9250d309ae1e7f8878a6162762b022e07fe6a4357689b50e7cf2ae6a5435de43</originalsourceid><addsrcrecordid>eNpVkU1v00AQhlcIREPLmRvaI4c63V3buzYHJNtxkxWJjRKHj5O1scdkiz9S22lV_hf_j41oEcxlpHeeeV-NBqE3lEwpEc7Vza6Yrih1p4IywvgzNKHEsy3bpV-fowkhjFo-c70z9GoYbogpx6cv0RkTjHHXJRP0K9RdsYdGF6rG0V71qhih1z_VqLsWdxUe94AXx0a1eKVHg3Zt2WvDruFQm6VR3wHO7nX7ozYcnKQB3uPNNtxk6yCL8eZTHMlrGcns2yWeJQEO10ESLfBKzs1cpsklDpIZDkK5NAjOUpx-jtdRuopxuEyjj8Es3pzU0-o2-SKTmUzmF-hFpeoBXj_2c7S9jrNoYS3TuYyCpXVgnI9WaW4npU18BRRE5XnCU5xyJjjbEcaAiAq4cmxXcM_fuQREUTFlJNdoJTj2Ofrwx_dw3DVQFtCOvarzQ68b1T_kndL5_5NW7_Pv3V3u-LZNPW4M3j0a9N3tEYYxb_RQQF2rFrrjkFOPUIf5whEGfftv1t-Qp1_ZvwEl-5Ho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801429747</pqid></control><display><type>article</type><title>Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Khan, Irfan ; Crouch, Jack D ; Bharti, Sanjay Kumar ; Sommers, Joshua A ; Carney, Sean M ; Yakubovskaya, Elena ; Garcia-Diaz, Miguel ; Trakselis, Michael A ; Brosh, Jr, Robert M</creator><creatorcontrib>Khan, Irfan ; Crouch, Jack D ; Bharti, Sanjay Kumar ; Sommers, Joshua A ; Carney, Sean M ; Yakubovskaya, Elena ; Garcia-Diaz, Miguel ; Trakselis, Michael A ; Brosh, Jr, Robert M</creatorcontrib><description>Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.712026</identifier><identifier>PMID: 27226550</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>DNA - chemistry ; DNA - metabolism ; DNA and Chromosomes ; DNA Damage ; DNA Helicases - metabolism ; Fluorescence Resonance Energy Transfer ; Humans ; Mitochondrial Proteins - metabolism ; Oxidation-Reduction ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 2016-07, Vol.291 (27), p.14324-14339</ispartof><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933186/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933186/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27226550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Irfan</creatorcontrib><creatorcontrib>Crouch, Jack D</creatorcontrib><creatorcontrib>Bharti, Sanjay Kumar</creatorcontrib><creatorcontrib>Sommers, Joshua A</creatorcontrib><creatorcontrib>Carney, Sean M</creatorcontrib><creatorcontrib>Yakubovskaya, Elena</creatorcontrib><creatorcontrib>Garcia-Diaz, Miguel</creatorcontrib><creatorcontrib>Trakselis, Michael A</creatorcontrib><creatorcontrib>Brosh, Jr, Robert M</creatorcontrib><title>Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.</description><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA and Chromosomes</subject><subject>DNA Damage</subject><subject>DNA Helicases - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Humans</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v00AQhlcIREPLmRvaI4c63V3buzYHJNtxkxWJjRKHj5O1scdkiz9S22lV_hf_j41oEcxlpHeeeV-NBqE3lEwpEc7Vza6Yrih1p4IywvgzNKHEsy3bpV-fowkhjFo-c70z9GoYbogpx6cv0RkTjHHXJRP0K9RdsYdGF6rG0V71qhih1z_VqLsWdxUe94AXx0a1eKVHg3Zt2WvDruFQm6VR3wHO7nX7ozYcnKQB3uPNNtxk6yCL8eZTHMlrGcns2yWeJQEO10ESLfBKzs1cpsklDpIZDkK5NAjOUpx-jtdRuopxuEyjj8Es3pzU0-o2-SKTmUzmF-hFpeoBXj_2c7S9jrNoYS3TuYyCpXVgnI9WaW4npU18BRRE5XnCU5xyJjjbEcaAiAq4cmxXcM_fuQREUTFlJNdoJTj2Ofrwx_dw3DVQFtCOvarzQ68b1T_kndL5_5NW7_Pv3V3u-LZNPW4M3j0a9N3tEYYxb_RQQF2rFrrjkFOPUIf5whEGfftv1t-Qp1_ZvwEl-5Ho</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Khan, Irfan</creator><creator>Crouch, Jack D</creator><creator>Bharti, Sanjay Kumar</creator><creator>Sommers, Joshua A</creator><creator>Carney, Sean M</creator><creator>Yakubovskaya, Elena</creator><creator>Garcia-Diaz, Miguel</creator><creator>Trakselis, Michael A</creator><creator>Brosh, Jr, Robert M</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160701</creationdate><title>Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING</title><author>Khan, Irfan ; Crouch, Jack D ; Bharti, Sanjay Kumar ; Sommers, Joshua A ; Carney, Sean M ; Yakubovskaya, Elena ; Garcia-Diaz, Miguel ; Trakselis, Michael A ; Brosh, Jr, Robert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-d9250d309ae1e7f8878a6162762b022e07fe6a4357689b50e7cf2ae6a5435de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA and Chromosomes</topic><topic>DNA Damage</topic><topic>DNA Helicases - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Humans</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Irfan</creatorcontrib><creatorcontrib>Crouch, Jack D</creatorcontrib><creatorcontrib>Bharti, Sanjay Kumar</creatorcontrib><creatorcontrib>Sommers, Joshua A</creatorcontrib><creatorcontrib>Carney, Sean M</creatorcontrib><creatorcontrib>Yakubovskaya, Elena</creatorcontrib><creatorcontrib>Garcia-Diaz, Miguel</creatorcontrib><creatorcontrib>Trakselis, Michael A</creatorcontrib><creatorcontrib>Brosh, Jr, Robert M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Irfan</au><au>Crouch, Jack D</au><au>Bharti, Sanjay Kumar</au><au>Sommers, Joshua A</au><au>Carney, Sean M</au><au>Yakubovskaya, Elena</au><au>Garcia-Diaz, Miguel</au><au>Trakselis, Michael A</au><au>Brosh, Jr, Robert M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>291</volume><issue>27</issue><spage>14324</spage><epage>14339</epage><pages>14324-14339</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>27226550</pmid><doi>10.1074/jbc.M115.712026</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-07, Vol.291 (27), p.14324-14339
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933186
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects DNA - chemistry
DNA - metabolism
DNA and Chromosomes
DNA Damage
DNA Helicases - metabolism
Fluorescence Resonance Energy Transfer
Humans
Mitochondrial Proteins - metabolism
Oxidation-Reduction
Substrate Specificity
title Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20Characterization%20of%20the%20Human%20Mitochondrial%20Replicative%20Twinkle%20Helicase:%20SUBSTRATE%20SPECIFICITY,%20DNA%20BRANCH%20MIGRATION,%20AND%20ABILITY%20TO%20OVERCOME%20BLOCKADES%20TO%20DNA%20UNWINDING&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Khan,%20Irfan&rft.date=2016-07-01&rft.volume=291&rft.issue=27&rft.spage=14324&rft.epage=14339&rft.pages=14324-14339&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.712026&rft_dat=%3Cproquest_pubme%3E1801429747%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801429747&rft_id=info:pmid/27226550&rfr_iscdi=true