Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain

The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-07, Vol.291 (27), p.13974-13986
Hauptverfasser: Shcherbatko, Anatoly, Rossi, Andrea, Foletti, Davide, Zhu, Guoyun, Bogin, Oren, Galindo Casas, Meritxell, Rickert, Mathias, Hasa-Moreno, Adela, Bartsevich, Victor, Crameri, Andreas, Steiner, Alexander R., Henningsen, Robert, Gill, Avinash, Pons, Jaume, Shelton, David L., Rajpal, Arvind, Strop, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13986
container_issue 27
container_start_page 13974
container_title The Journal of biological chemistry
container_volume 291
creator Shcherbatko, Anatoly
Rossi, Andrea
Foletti, Davide
Zhu, Guoyun
Bogin, Oren
Galindo Casas, Meritxell
Rickert, Mathias
Hasa-Moreno, Adela
Bartsevich, Victor
Crameri, Andreas
Steiner, Alexander R.
Henningsen, Robert
Gill, Avinash
Pons, Jaume
Shelton, David L.
Rajpal, Arvind
Strop, Pavel
description The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.
doi_str_mv 10.1074/jbc.M116.725978
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820367466</els_id><sourcerecordid>S0021925820367466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4Mobk7P3iRfoF3SJk1zEWRMJ2w62ARvIU3TLqNNR9oN9u1NmQ49mMuDvP_7Je8HwD1GIUaMjLeZChcYJyGLKGfpBRhilMZBTPHnJRgiFOGARzQdgJu23SJ_CMfXYBAxHPX3Q2CmtjRWa2dsCWem3FRHuGw6bTsobQ5XutKqMwcNF0a5Zud8y9gWylL60sE3ecAhg6smN_saTjbSWl3BonFw7bTs6p7TFHDp07fgqpBVq---6wh8PE_Xk1kwf395nTzNA0VS3gVUUsoznCU5QzSjKM4iQlSkE5qRhPOCxIkimCSxyhNaUJYQlHHOlMScFpil8Qg8nri7fVbrXPkvOFmJnTO1dEfRSCP-dqzZiLI5CMLjGNMeMD4B_MJt63RxnsVI9NaFty566-Jk3U88_H7ynP_R7AP8FNB-8YPRTrTKaKt0bpz3K_LG_Av_Akwfkns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shcherbatko, Anatoly ; Rossi, Andrea ; Foletti, Davide ; Zhu, Guoyun ; Bogin, Oren ; Galindo Casas, Meritxell ; Rickert, Mathias ; Hasa-Moreno, Adela ; Bartsevich, Victor ; Crameri, Andreas ; Steiner, Alexander R. ; Henningsen, Robert ; Gill, Avinash ; Pons, Jaume ; Shelton, David L. ; Rajpal, Arvind ; Strop, Pavel</creator><creatorcontrib>Shcherbatko, Anatoly ; Rossi, Andrea ; Foletti, Davide ; Zhu, Guoyun ; Bogin, Oren ; Galindo Casas, Meritxell ; Rickert, Mathias ; Hasa-Moreno, Adela ; Bartsevich, Victor ; Crameri, Andreas ; Steiner, Alexander R. ; Henningsen, Robert ; Gill, Avinash ; Pons, Jaume ; Shelton, David L. ; Rajpal, Arvind ; Strop, Pavel</creatorcontrib><description>The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.725978</identifier><identifier>PMID: 27129258</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ceratotoxin ; directed evolution ; engineering ; HEK293 Cells ; Humans ; Nav1.7 ; NAV1.7 Voltage-Gated Sodium Channel - chemistry ; NAV1.7 Voltage-Gated Sodium Channel - drug effects ; Neurobiology ; pain ; Pain Management - methods ; Patch-Clamp Techniques ; Phylogeny ; Protein Engineering ; sodium channel ; Spider Venoms - chemistry ; structure-function ; toxin ; Voltage-Gated Sodium Channel Blockers - pharmacology</subject><ispartof>The Journal of biological chemistry, 2016-07, Vol.291 (27), p.13974-13986</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</citedby><cites>FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933158/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933158/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27129258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shcherbatko, Anatoly</creatorcontrib><creatorcontrib>Rossi, Andrea</creatorcontrib><creatorcontrib>Foletti, Davide</creatorcontrib><creatorcontrib>Zhu, Guoyun</creatorcontrib><creatorcontrib>Bogin, Oren</creatorcontrib><creatorcontrib>Galindo Casas, Meritxell</creatorcontrib><creatorcontrib>Rickert, Mathias</creatorcontrib><creatorcontrib>Hasa-Moreno, Adela</creatorcontrib><creatorcontrib>Bartsevich, Victor</creatorcontrib><creatorcontrib>Crameri, Andreas</creatorcontrib><creatorcontrib>Steiner, Alexander R.</creatorcontrib><creatorcontrib>Henningsen, Robert</creatorcontrib><creatorcontrib>Gill, Avinash</creatorcontrib><creatorcontrib>Pons, Jaume</creatorcontrib><creatorcontrib>Shelton, David L.</creatorcontrib><creatorcontrib>Rajpal, Arvind</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><title>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.</description><subject>ceratotoxin</subject><subject>directed evolution</subject><subject>engineering</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Nav1.7</subject><subject>NAV1.7 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.7 Voltage-Gated Sodium Channel - drug effects</subject><subject>Neurobiology</subject><subject>pain</subject><subject>Pain Management - methods</subject><subject>Patch-Clamp Techniques</subject><subject>Phylogeny</subject><subject>Protein Engineering</subject><subject>sodium channel</subject><subject>Spider Venoms - chemistry</subject><subject>structure-function</subject><subject>toxin</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFLwzAUx4Mobk7P3iRfoF3SJk1zEWRMJ2w62ARvIU3TLqNNR9oN9u1NmQ49mMuDvP_7Je8HwD1GIUaMjLeZChcYJyGLKGfpBRhilMZBTPHnJRgiFOGARzQdgJu23SJ_CMfXYBAxHPX3Q2CmtjRWa2dsCWem3FRHuGw6bTsobQ5XutKqMwcNF0a5Zud8y9gWylL60sE3ecAhg6smN_saTjbSWl3BonFw7bTs6p7TFHDp07fgqpBVq---6wh8PE_Xk1kwf395nTzNA0VS3gVUUsoznCU5QzSjKM4iQlSkE5qRhPOCxIkimCSxyhNaUJYQlHHOlMScFpil8Qg8nri7fVbrXPkvOFmJnTO1dEfRSCP-dqzZiLI5CMLjGNMeMD4B_MJt63RxnsVI9NaFty566-Jk3U88_H7ynP_R7AP8FNB-8YPRTrTKaKt0bpz3K_LG_Av_Akwfkns</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Shcherbatko, Anatoly</creator><creator>Rossi, Andrea</creator><creator>Foletti, Davide</creator><creator>Zhu, Guoyun</creator><creator>Bogin, Oren</creator><creator>Galindo Casas, Meritxell</creator><creator>Rickert, Mathias</creator><creator>Hasa-Moreno, Adela</creator><creator>Bartsevich, Victor</creator><creator>Crameri, Andreas</creator><creator>Steiner, Alexander R.</creator><creator>Henningsen, Robert</creator><creator>Gill, Avinash</creator><creator>Pons, Jaume</creator><creator>Shelton, David L.</creator><creator>Rajpal, Arvind</creator><creator>Strop, Pavel</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160701</creationdate><title>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</title><author>Shcherbatko, Anatoly ; Rossi, Andrea ; Foletti, Davide ; Zhu, Guoyun ; Bogin, Oren ; Galindo Casas, Meritxell ; Rickert, Mathias ; Hasa-Moreno, Adela ; Bartsevich, Victor ; Crameri, Andreas ; Steiner, Alexander R. ; Henningsen, Robert ; Gill, Avinash ; Pons, Jaume ; Shelton, David L. ; Rajpal, Arvind ; Strop, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ceratotoxin</topic><topic>directed evolution</topic><topic>engineering</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Nav1.7</topic><topic>NAV1.7 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.7 Voltage-Gated Sodium Channel - drug effects</topic><topic>Neurobiology</topic><topic>pain</topic><topic>Pain Management - methods</topic><topic>Patch-Clamp Techniques</topic><topic>Phylogeny</topic><topic>Protein Engineering</topic><topic>sodium channel</topic><topic>Spider Venoms - chemistry</topic><topic>structure-function</topic><topic>toxin</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shcherbatko, Anatoly</creatorcontrib><creatorcontrib>Rossi, Andrea</creatorcontrib><creatorcontrib>Foletti, Davide</creatorcontrib><creatorcontrib>Zhu, Guoyun</creatorcontrib><creatorcontrib>Bogin, Oren</creatorcontrib><creatorcontrib>Galindo Casas, Meritxell</creatorcontrib><creatorcontrib>Rickert, Mathias</creatorcontrib><creatorcontrib>Hasa-Moreno, Adela</creatorcontrib><creatorcontrib>Bartsevich, Victor</creatorcontrib><creatorcontrib>Crameri, Andreas</creatorcontrib><creatorcontrib>Steiner, Alexander R.</creatorcontrib><creatorcontrib>Henningsen, Robert</creatorcontrib><creatorcontrib>Gill, Avinash</creatorcontrib><creatorcontrib>Pons, Jaume</creatorcontrib><creatorcontrib>Shelton, David L.</creatorcontrib><creatorcontrib>Rajpal, Arvind</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shcherbatko, Anatoly</au><au>Rossi, Andrea</au><au>Foletti, Davide</au><au>Zhu, Guoyun</au><au>Bogin, Oren</au><au>Galindo Casas, Meritxell</au><au>Rickert, Mathias</au><au>Hasa-Moreno, Adela</au><au>Bartsevich, Victor</au><au>Crameri, Andreas</au><au>Steiner, Alexander R.</au><au>Henningsen, Robert</au><au>Gill, Avinash</au><au>Pons, Jaume</au><au>Shelton, David L.</au><au>Rajpal, Arvind</au><au>Strop, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>291</volume><issue>27</issue><spage>13974</spage><epage>13986</epage><pages>13974-13986</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27129258</pmid><doi>10.1074/jbc.M116.725978</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-07, Vol.291 (27), p.13974-13986
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933158
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects ceratotoxin
directed evolution
engineering
HEK293 Cells
Humans
Nav1.7
NAV1.7 Voltage-Gated Sodium Channel - chemistry
NAV1.7 Voltage-Gated Sodium Channel - drug effects
Neurobiology
pain
Pain Management - methods
Patch-Clamp Techniques
Phylogeny
Protein Engineering
sodium channel
Spider Venoms - chemistry
structure-function
toxin
Voltage-Gated Sodium Channel Blockers - pharmacology
title Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Highly%20Potent%20and%20Selective%20Microproteins%20against%20Nav1.7%20Sodium%20Channel%20for%20Treatment%20of%20Pain&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Shcherbatko,%20Anatoly&rft.date=2016-07-01&rft.volume=291&rft.issue=27&rft.spage=13974&rft.epage=13986&rft.pages=13974-13986&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.725978&rft_dat=%3Celsevier_pubme%3ES0021925820367466%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27129258&rft_els_id=S0021925820367466&rfr_iscdi=true