Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain
The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-07, Vol.291 (27), p.13974-13986 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13986 |
---|---|
container_issue | 27 |
container_start_page | 13974 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Shcherbatko, Anatoly Rossi, Andrea Foletti, Davide Zhu, Guoyun Bogin, Oren Galindo Casas, Meritxell Rickert, Mathias Hasa-Moreno, Adela Bartsevich, Victor Crameri, Andreas Steiner, Alexander R. Henningsen, Robert Gill, Avinash Pons, Jaume Shelton, David L. Rajpal, Arvind Strop, Pavel |
description | The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain. |
doi_str_mv | 10.1074/jbc.M116.725978 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820367466</els_id><sourcerecordid>S0021925820367466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4Mobk7P3iRfoF3SJk1zEWRMJ2w62ARvIU3TLqNNR9oN9u1NmQ49mMuDvP_7Je8HwD1GIUaMjLeZChcYJyGLKGfpBRhilMZBTPHnJRgiFOGARzQdgJu23SJ_CMfXYBAxHPX3Q2CmtjRWa2dsCWem3FRHuGw6bTsobQ5XutKqMwcNF0a5Zud8y9gWylL60sE3ecAhg6smN_saTjbSWl3BonFw7bTs6p7TFHDp07fgqpBVq---6wh8PE_Xk1kwf395nTzNA0VS3gVUUsoznCU5QzSjKM4iQlSkE5qRhPOCxIkimCSxyhNaUJYQlHHOlMScFpil8Qg8nri7fVbrXPkvOFmJnTO1dEfRSCP-dqzZiLI5CMLjGNMeMD4B_MJt63RxnsVI9NaFty566-Jk3U88_H7ynP_R7AP8FNB-8YPRTrTKaKt0bpz3K_LG_Av_Akwfkns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shcherbatko, Anatoly ; Rossi, Andrea ; Foletti, Davide ; Zhu, Guoyun ; Bogin, Oren ; Galindo Casas, Meritxell ; Rickert, Mathias ; Hasa-Moreno, Adela ; Bartsevich, Victor ; Crameri, Andreas ; Steiner, Alexander R. ; Henningsen, Robert ; Gill, Avinash ; Pons, Jaume ; Shelton, David L. ; Rajpal, Arvind ; Strop, Pavel</creator><creatorcontrib>Shcherbatko, Anatoly ; Rossi, Andrea ; Foletti, Davide ; Zhu, Guoyun ; Bogin, Oren ; Galindo Casas, Meritxell ; Rickert, Mathias ; Hasa-Moreno, Adela ; Bartsevich, Victor ; Crameri, Andreas ; Steiner, Alexander R. ; Henningsen, Robert ; Gill, Avinash ; Pons, Jaume ; Shelton, David L. ; Rajpal, Arvind ; Strop, Pavel</creatorcontrib><description>The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.725978</identifier><identifier>PMID: 27129258</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ceratotoxin ; directed evolution ; engineering ; HEK293 Cells ; Humans ; Nav1.7 ; NAV1.7 Voltage-Gated Sodium Channel - chemistry ; NAV1.7 Voltage-Gated Sodium Channel - drug effects ; Neurobiology ; pain ; Pain Management - methods ; Patch-Clamp Techniques ; Phylogeny ; Protein Engineering ; sodium channel ; Spider Venoms - chemistry ; structure-function ; toxin ; Voltage-Gated Sodium Channel Blockers - pharmacology</subject><ispartof>The Journal of biological chemistry, 2016-07, Vol.291 (27), p.13974-13986</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</citedby><cites>FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933158/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933158/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27129258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shcherbatko, Anatoly</creatorcontrib><creatorcontrib>Rossi, Andrea</creatorcontrib><creatorcontrib>Foletti, Davide</creatorcontrib><creatorcontrib>Zhu, Guoyun</creatorcontrib><creatorcontrib>Bogin, Oren</creatorcontrib><creatorcontrib>Galindo Casas, Meritxell</creatorcontrib><creatorcontrib>Rickert, Mathias</creatorcontrib><creatorcontrib>Hasa-Moreno, Adela</creatorcontrib><creatorcontrib>Bartsevich, Victor</creatorcontrib><creatorcontrib>Crameri, Andreas</creatorcontrib><creatorcontrib>Steiner, Alexander R.</creatorcontrib><creatorcontrib>Henningsen, Robert</creatorcontrib><creatorcontrib>Gill, Avinash</creatorcontrib><creatorcontrib>Pons, Jaume</creatorcontrib><creatorcontrib>Shelton, David L.</creatorcontrib><creatorcontrib>Rajpal, Arvind</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><title>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.</description><subject>ceratotoxin</subject><subject>directed evolution</subject><subject>engineering</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Nav1.7</subject><subject>NAV1.7 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.7 Voltage-Gated Sodium Channel - drug effects</subject><subject>Neurobiology</subject><subject>pain</subject><subject>Pain Management - methods</subject><subject>Patch-Clamp Techniques</subject><subject>Phylogeny</subject><subject>Protein Engineering</subject><subject>sodium channel</subject><subject>Spider Venoms - chemistry</subject><subject>structure-function</subject><subject>toxin</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFLwzAUx4Mobk7P3iRfoF3SJk1zEWRMJ2w62ARvIU3TLqNNR9oN9u1NmQ49mMuDvP_7Je8HwD1GIUaMjLeZChcYJyGLKGfpBRhilMZBTPHnJRgiFOGARzQdgJu23SJ_CMfXYBAxHPX3Q2CmtjRWa2dsCWem3FRHuGw6bTsobQ5XutKqMwcNF0a5Zud8y9gWylL60sE3ecAhg6smN_saTjbSWl3BonFw7bTs6p7TFHDp07fgqpBVq---6wh8PE_Xk1kwf395nTzNA0VS3gVUUsoznCU5QzSjKM4iQlSkE5qRhPOCxIkimCSxyhNaUJYQlHHOlMScFpil8Qg8nri7fVbrXPkvOFmJnTO1dEfRSCP-dqzZiLI5CMLjGNMeMD4B_MJt63RxnsVI9NaFty566-Jk3U88_H7ynP_R7AP8FNB-8YPRTrTKaKt0bpz3K_LG_Av_Akwfkns</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Shcherbatko, Anatoly</creator><creator>Rossi, Andrea</creator><creator>Foletti, Davide</creator><creator>Zhu, Guoyun</creator><creator>Bogin, Oren</creator><creator>Galindo Casas, Meritxell</creator><creator>Rickert, Mathias</creator><creator>Hasa-Moreno, Adela</creator><creator>Bartsevich, Victor</creator><creator>Crameri, Andreas</creator><creator>Steiner, Alexander R.</creator><creator>Henningsen, Robert</creator><creator>Gill, Avinash</creator><creator>Pons, Jaume</creator><creator>Shelton, David L.</creator><creator>Rajpal, Arvind</creator><creator>Strop, Pavel</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160701</creationdate><title>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</title><author>Shcherbatko, Anatoly ; Rossi, Andrea ; Foletti, Davide ; Zhu, Guoyun ; Bogin, Oren ; Galindo Casas, Meritxell ; Rickert, Mathias ; Hasa-Moreno, Adela ; Bartsevich, Victor ; Crameri, Andreas ; Steiner, Alexander R. ; Henningsen, Robert ; Gill, Avinash ; Pons, Jaume ; Shelton, David L. ; Rajpal, Arvind ; Strop, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-5a559b1b6d705b503b244c2e65b4699f436c41463cd65f57640b997ca195f1783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ceratotoxin</topic><topic>directed evolution</topic><topic>engineering</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Nav1.7</topic><topic>NAV1.7 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.7 Voltage-Gated Sodium Channel - drug effects</topic><topic>Neurobiology</topic><topic>pain</topic><topic>Pain Management - methods</topic><topic>Patch-Clamp Techniques</topic><topic>Phylogeny</topic><topic>Protein Engineering</topic><topic>sodium channel</topic><topic>Spider Venoms - chemistry</topic><topic>structure-function</topic><topic>toxin</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shcherbatko, Anatoly</creatorcontrib><creatorcontrib>Rossi, Andrea</creatorcontrib><creatorcontrib>Foletti, Davide</creatorcontrib><creatorcontrib>Zhu, Guoyun</creatorcontrib><creatorcontrib>Bogin, Oren</creatorcontrib><creatorcontrib>Galindo Casas, Meritxell</creatorcontrib><creatorcontrib>Rickert, Mathias</creatorcontrib><creatorcontrib>Hasa-Moreno, Adela</creatorcontrib><creatorcontrib>Bartsevich, Victor</creatorcontrib><creatorcontrib>Crameri, Andreas</creatorcontrib><creatorcontrib>Steiner, Alexander R.</creatorcontrib><creatorcontrib>Henningsen, Robert</creatorcontrib><creatorcontrib>Gill, Avinash</creatorcontrib><creatorcontrib>Pons, Jaume</creatorcontrib><creatorcontrib>Shelton, David L.</creatorcontrib><creatorcontrib>Rajpal, Arvind</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shcherbatko, Anatoly</au><au>Rossi, Andrea</au><au>Foletti, Davide</au><au>Zhu, Guoyun</au><au>Bogin, Oren</au><au>Galindo Casas, Meritxell</au><au>Rickert, Mathias</au><au>Hasa-Moreno, Adela</au><au>Bartsevich, Victor</au><au>Crameri, Andreas</au><au>Steiner, Alexander R.</au><au>Henningsen, Robert</au><au>Gill, Avinash</au><au>Pons, Jaume</au><au>Shelton, David L.</au><au>Rajpal, Arvind</au><au>Strop, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>291</volume><issue>27</issue><spage>13974</spage><epage>13986</epage><pages>13974-13986</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27129258</pmid><doi>10.1074/jbc.M116.725978</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-07, Vol.291 (27), p.13974-13986 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933158 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | ceratotoxin directed evolution engineering HEK293 Cells Humans Nav1.7 NAV1.7 Voltage-Gated Sodium Channel - chemistry NAV1.7 Voltage-Gated Sodium Channel - drug effects Neurobiology pain Pain Management - methods Patch-Clamp Techniques Phylogeny Protein Engineering sodium channel Spider Venoms - chemistry structure-function toxin Voltage-Gated Sodium Channel Blockers - pharmacology |
title | Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Highly%20Potent%20and%20Selective%20Microproteins%20against%20Nav1.7%20Sodium%20Channel%20for%20Treatment%20of%20Pain&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Shcherbatko,%20Anatoly&rft.date=2016-07-01&rft.volume=291&rft.issue=27&rft.spage=13974&rft.epage=13986&rft.pages=13974-13986&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.725978&rft_dat=%3Celsevier_pubme%3ES0021925820367466%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27129258&rft_els_id=S0021925820367466&rfr_iscdi=true |