Gate dependence of upper critical field in superconducting (110) LaAlO3/SrTiO3 interface
The fundamental parameters of the superconducting state such as coherence length and pairing strength are essential for understanding the nature of superconductivity. These parameters can be estimated by measuring critical parameters such as upper critical field, H c2 . In this work, H c2 of a super...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-07, Vol.6 (1), p.28379-28379, Article 28379 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28379 |
---|---|
container_issue | 1 |
container_start_page | 28379 |
container_title | Scientific reports |
container_volume | 6 |
creator | Shen, S. C. Chen, B. B. Xue, H. X. Cao, G. Li, C. J. Wang, X. X. Hong, Y. P. Guo, G. P. Dou, R. F. Xiong, C. M. He, L. Nie, J. C. |
description | The fundamental parameters of the superconducting state such as coherence length and pairing strength are essential for understanding the nature of superconductivity. These parameters can be estimated by measuring critical parameters such as upper critical field,
H
c2
. In this work,
H
c2
of a superconducting (110) LaAlO
3
/SrTiO
3
interface is determined through magnetoresistive measurements as a function of the gate voltage,
V
G
. When
V
G
increases, the critical temperature has a dome-like shape, while
H
c2
monotonically decreases. This relationship of independence between the variation of
T
c
and of
H
c2
suggests that the Cooper pairing potential is stronger in the underdoped region and the coherence length increases with the increase of
V
G
. The result is as for high temperature superconducting cuprates and it is different than for conventional low temperature superconductors. |
doi_str_mv | 10.1038/srep28379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4932507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4148376321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4ff1bab121f6906a6157a9a8a62293828237ca7812f7f75d8c165a754a5a5cb63</originalsourceid><addsrcrecordid>eNplkV9rFDEUxYMottQ--AUk4EsrbJs_k0nyIpSiVVjYh7bgW7ibuVlTZjNjMlPw25uydVntfckl58fJCYeQ95xdcCbNZck4CiO1fUWOBWvUQkghXh_sR-S0lAdWRwnbcPuWHAkttRGaH5MfNzAh7XDE1GHySIdA53HETH2OU_TQ0xCx72hMtMz13g-pm_0U04aecc7O6RKu-pW8vM13cSUrNmEO4PEdeROgL3j6fJ6Q-69f7q6_LZarm-_XV8uFb6SZFk0IfA1rLnhoLWuh5UqDBQOtEFYaYYTUHrThIuigVWc8bxVo1YAC5detPCGfd77jvN5i5zFNGXo35riF_NsNEN2_Soo_3WZ4dI2VQjFdDc6eDfLwa8YyuW0sHvseEg5zcdwwoRtpmyf043_owzDnVL9XKV6TWylNpc53lM9Dqe2EfRjO3FNlbl9ZZT8cpt-TfwuqwKcdUKqUNpgPnnzh9gdztp5J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811579338</pqid></control><display><type>article</type><title>Gate dependence of upper critical field in superconducting (110) LaAlO3/SrTiO3 interface</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Shen, S. C. ; Chen, B. B. ; Xue, H. X. ; Cao, G. ; Li, C. J. ; Wang, X. X. ; Hong, Y. P. ; Guo, G. P. ; Dou, R. F. ; Xiong, C. M. ; He, L. ; Nie, J. C.</creator><creatorcontrib>Shen, S. C. ; Chen, B. B. ; Xue, H. X. ; Cao, G. ; Li, C. J. ; Wang, X. X. ; Hong, Y. P. ; Guo, G. P. ; Dou, R. F. ; Xiong, C. M. ; He, L. ; Nie, J. C.</creatorcontrib><description>The fundamental parameters of the superconducting state such as coherence length and pairing strength are essential for understanding the nature of superconductivity. These parameters can be estimated by measuring critical parameters such as upper critical field,
H
c2
. In this work,
H
c2
of a superconducting (110) LaAlO
3
/SrTiO
3
interface is determined through magnetoresistive measurements as a function of the gate voltage,
V
G
. When
V
G
increases, the critical temperature has a dome-like shape, while
H
c2
monotonically decreases. This relationship of independence between the variation of
T
c
and of
H
c2
suggests that the Cooper pairing potential is stronger in the underdoped region and the coherence length increases with the increase of
V
G
. The result is as for high temperature superconducting cuprates and it is different than for conventional low temperature superconductors.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep28379</identifier><identifier>PMID: 27378271</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/544 ; High temperature ; Humanities and Social Sciences ; Interfaces ; Low temperature ; multidisciplinary ; Science</subject><ispartof>Scientific reports, 2016-07, Vol.6 (1), p.28379-28379, Article 28379</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4ff1bab121f6906a6157a9a8a62293828237ca7812f7f75d8c165a754a5a5cb63</citedby><cites>FETCH-LOGICAL-c438t-4ff1bab121f6906a6157a9a8a62293828237ca7812f7f75d8c165a754a5a5cb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932507/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932507/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27378271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, S. C.</creatorcontrib><creatorcontrib>Chen, B. B.</creatorcontrib><creatorcontrib>Xue, H. X.</creatorcontrib><creatorcontrib>Cao, G.</creatorcontrib><creatorcontrib>Li, C. J.</creatorcontrib><creatorcontrib>Wang, X. X.</creatorcontrib><creatorcontrib>Hong, Y. P.</creatorcontrib><creatorcontrib>Guo, G. P.</creatorcontrib><creatorcontrib>Dou, R. F.</creatorcontrib><creatorcontrib>Xiong, C. M.</creatorcontrib><creatorcontrib>He, L.</creatorcontrib><creatorcontrib>Nie, J. C.</creatorcontrib><title>Gate dependence of upper critical field in superconducting (110) LaAlO3/SrTiO3 interface</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The fundamental parameters of the superconducting state such as coherence length and pairing strength are essential for understanding the nature of superconductivity. These parameters can be estimated by measuring critical parameters such as upper critical field,
H
c2
. In this work,
H
c2
of a superconducting (110) LaAlO
3
/SrTiO
3
interface is determined through magnetoresistive measurements as a function of the gate voltage,
V
G
. When
V
G
increases, the critical temperature has a dome-like shape, while
H
c2
monotonically decreases. This relationship of independence between the variation of
T
c
and of
H
c2
suggests that the Cooper pairing potential is stronger in the underdoped region and the coherence length increases with the increase of
V
G
. The result is as for high temperature superconducting cuprates and it is different than for conventional low temperature superconductors.</description><subject>639/766/119/1003</subject><subject>639/766/119/544</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Low temperature</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV9rFDEUxYMottQ--AUk4EsrbJs_k0nyIpSiVVjYh7bgW7ibuVlTZjNjMlPw25uydVntfckl58fJCYeQ95xdcCbNZck4CiO1fUWOBWvUQkghXh_sR-S0lAdWRwnbcPuWHAkttRGaH5MfNzAh7XDE1GHySIdA53HETH2OU_TQ0xCx72hMtMz13g-pm_0U04aecc7O6RKu-pW8vM13cSUrNmEO4PEdeROgL3j6fJ6Q-69f7q6_LZarm-_XV8uFb6SZFk0IfA1rLnhoLWuh5UqDBQOtEFYaYYTUHrThIuigVWc8bxVo1YAC5detPCGfd77jvN5i5zFNGXo35riF_NsNEN2_Soo_3WZ4dI2VQjFdDc6eDfLwa8YyuW0sHvseEg5zcdwwoRtpmyf043_owzDnVL9XKV6TWylNpc53lM9Dqe2EfRjO3FNlbl9ZZT8cpt-TfwuqwKcdUKqUNpgPnnzh9gdztp5J</recordid><startdate>20160705</startdate><enddate>20160705</enddate><creator>Shen, S. C.</creator><creator>Chen, B. B.</creator><creator>Xue, H. X.</creator><creator>Cao, G.</creator><creator>Li, C. J.</creator><creator>Wang, X. X.</creator><creator>Hong, Y. P.</creator><creator>Guo, G. P.</creator><creator>Dou, R. F.</creator><creator>Xiong, C. M.</creator><creator>He, L.</creator><creator>Nie, J. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160705</creationdate><title>Gate dependence of upper critical field in superconducting (110) LaAlO3/SrTiO3 interface</title><author>Shen, S. C. ; Chen, B. B. ; Xue, H. X. ; Cao, G. ; Li, C. J. ; Wang, X. X. ; Hong, Y. P. ; Guo, G. P. ; Dou, R. F. ; Xiong, C. M. ; He, L. ; Nie, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4ff1bab121f6906a6157a9a8a62293828237ca7812f7f75d8c165a754a5a5cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/544</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Low temperature</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, S. C.</creatorcontrib><creatorcontrib>Chen, B. B.</creatorcontrib><creatorcontrib>Xue, H. X.</creatorcontrib><creatorcontrib>Cao, G.</creatorcontrib><creatorcontrib>Li, C. J.</creatorcontrib><creatorcontrib>Wang, X. X.</creatorcontrib><creatorcontrib>Hong, Y. P.</creatorcontrib><creatorcontrib>Guo, G. P.</creatorcontrib><creatorcontrib>Dou, R. F.</creatorcontrib><creatorcontrib>Xiong, C. M.</creatorcontrib><creatorcontrib>He, L.</creatorcontrib><creatorcontrib>Nie, J. C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, S. C.</au><au>Chen, B. B.</au><au>Xue, H. X.</au><au>Cao, G.</au><au>Li, C. J.</au><au>Wang, X. X.</au><au>Hong, Y. P.</au><au>Guo, G. P.</au><au>Dou, R. F.</au><au>Xiong, C. M.</au><au>He, L.</au><au>Nie, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate dependence of upper critical field in superconducting (110) LaAlO3/SrTiO3 interface</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-07-05</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>28379</spage><epage>28379</epage><pages>28379-28379</pages><artnum>28379</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The fundamental parameters of the superconducting state such as coherence length and pairing strength are essential for understanding the nature of superconductivity. These parameters can be estimated by measuring critical parameters such as upper critical field,
H
c2
. In this work,
H
c2
of a superconducting (110) LaAlO
3
/SrTiO
3
interface is determined through magnetoresistive measurements as a function of the gate voltage,
V
G
. When
V
G
increases, the critical temperature has a dome-like shape, while
H
c2
monotonically decreases. This relationship of independence between the variation of
T
c
and of
H
c2
suggests that the Cooper pairing potential is stronger in the underdoped region and the coherence length increases with the increase of
V
G
. The result is as for high temperature superconducting cuprates and it is different than for conventional low temperature superconductors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27378271</pmid><doi>10.1038/srep28379</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-07, Vol.6 (1), p.28379-28379, Article 28379 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4932507 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/766/119/1003 639/766/119/544 High temperature Humanities and Social Sciences Interfaces Low temperature multidisciplinary Science |
title | Gate dependence of upper critical field in superconducting (110) LaAlO3/SrTiO3 interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%20dependence%20of%20upper%20critical%20field%20in%20superconducting%20(110)%20LaAlO3/SrTiO3%20interface&rft.jtitle=Scientific%20reports&rft.au=Shen,%20S.%20C.&rft.date=2016-07-05&rft.volume=6&rft.issue=1&rft.spage=28379&rft.epage=28379&rft.pages=28379-28379&rft.artnum=28379&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep28379&rft_dat=%3Cproquest_pubme%3E4148376321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811579338&rft_id=info:pmid/27378271&rfr_iscdi=true |