Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons

For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2016-05, Vol.115 (5), p.2501-2518
Hauptverfasser: Ralston, Bridget N, Flagg, Lucas Q, Faggin, Eric, Birmingham, John T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2518
container_issue 5
container_start_page 2501
container_title Journal of neurophysiology
container_volume 115
creator Ralston, Bridget N
Flagg, Lucas Q
Faggin, Eric
Birmingham, John T
description For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history"). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates "history" into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking.
doi_str_mv 10.1152/jn.00993.2015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4922469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790020172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-86f4101542046bfec406ffb3c7360f9325665b808babd5d838d6c71b57b050443</originalsourceid><addsrcrecordid>eNpVUT1v2zAQJYoUjeN27BpozCL3SIofWgIEQdIaMNClnToQJEXZdGRSIeUA_fehPxqky328e3h3uIfQVwwLjBn5tg0LgLalCwKYfUCzgpEas1ZeoBlAqSkIcYmuct4CgGBAPqFLwqWUGPgM_VkGG9MYk558WFd59E-uLo2rdKfHqaAxVD5MsdLVEbaxcwWodnrauBK81UOlQ1cZH4e4PrbB7VMM-TP62Oshuy_nPEe_Hx9-3f-oVz-_L-_vVrWlUky15H2Dy_ENgYab3tkGeN8bagXl0LeUMM6ZkSCNNh3rJJUdtwIbJgwwaBo6R7cn3XFvdq6zLkxJD2pMfqfTXxW1V_9Pgt-odXxRTUtIw9sicHMWSPF57_Kkdj5bNww6uLjPCou2vBKwIIVan6g2xZyT69_WYFAHQ9Q2qKMh6mBI4V-_v-2N_c8B-go0g4ey</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790020172</pqid></control><display><type>article</type><title>Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ralston, Bridget N ; Flagg, Lucas Q ; Faggin, Eric ; Birmingham, John T</creator><creatorcontrib>Ralston, Bridget N ; Flagg, Lucas Q ; Faggin, Eric ; Birmingham, John T</creatorcontrib><description>For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history"). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates "history" into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking.</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00993.2015</identifier><identifier>PMID: 26888106</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Action Potentials ; Adaptation, Physiological ; Animals ; Decapoda (Crustacea) ; Ganglia, Invertebrate - cytology ; Ganglia, Invertebrate - physiology ; Models, Neurological ; Neurons - physiology ; Pylorus - innervation ; Sensory Processing</subject><ispartof>Journal of neurophysiology, 2016-05, Vol.115 (5), p.2501-2518</ispartof><rights>Copyright © 2016 the American Physiological Society.</rights><rights>Copyright © 2016 the American Physiological Society 2016 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-86f4101542046bfec406ffb3c7360f9325665b808babd5d838d6c71b57b050443</citedby><cites>FETCH-LOGICAL-c387t-86f4101542046bfec406ffb3c7360f9325665b808babd5d838d6c71b57b050443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3030,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26888106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ralston, Bridget N</creatorcontrib><creatorcontrib>Flagg, Lucas Q</creatorcontrib><creatorcontrib>Faggin, Eric</creatorcontrib><creatorcontrib>Birmingham, John T</creatorcontrib><title>Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history"). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates "history" into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking.</description><subject>Action Potentials</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Decapoda (Crustacea)</subject><subject>Ganglia, Invertebrate - cytology</subject><subject>Ganglia, Invertebrate - physiology</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Pylorus - innervation</subject><subject>Sensory Processing</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1v2zAQJYoUjeN27BpozCL3SIofWgIEQdIaMNClnToQJEXZdGRSIeUA_fehPxqky328e3h3uIfQVwwLjBn5tg0LgLalCwKYfUCzgpEas1ZeoBlAqSkIcYmuct4CgGBAPqFLwqWUGPgM_VkGG9MYk558WFd59E-uLo2rdKfHqaAxVD5MsdLVEbaxcwWodnrauBK81UOlQ1cZH4e4PrbB7VMM-TP62Oshuy_nPEe_Hx9-3f-oVz-_L-_vVrWlUky15H2Dy_ENgYab3tkGeN8bagXl0LeUMM6ZkSCNNh3rJJUdtwIbJgwwaBo6R7cn3XFvdq6zLkxJD2pMfqfTXxW1V_9Pgt-odXxRTUtIw9sicHMWSPF57_Kkdj5bNww6uLjPCou2vBKwIIVan6g2xZyT69_WYFAHQ9Q2qKMh6mBI4V-_v-2N_c8B-go0g4ey</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Ralston, Bridget N</creator><creator>Flagg, Lucas Q</creator><creator>Faggin, Eric</creator><creator>Birmingham, John T</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons</title><author>Ralston, Bridget N ; Flagg, Lucas Q ; Faggin, Eric ; Birmingham, John T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-86f4101542046bfec406ffb3c7360f9325665b808babd5d838d6c71b57b050443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Action Potentials</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Decapoda (Crustacea)</topic><topic>Ganglia, Invertebrate - cytology</topic><topic>Ganglia, Invertebrate - physiology</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Pylorus - innervation</topic><topic>Sensory Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ralston, Bridget N</creatorcontrib><creatorcontrib>Flagg, Lucas Q</creatorcontrib><creatorcontrib>Faggin, Eric</creatorcontrib><creatorcontrib>Birmingham, John T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ralston, Bridget N</au><au>Flagg, Lucas Q</au><au>Faggin, Eric</au><au>Birmingham, John T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>115</volume><issue>5</issue><spage>2501</spage><epage>2518</epage><pages>2501-2518</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history"). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates "history" into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>26888106</pmid><doi>10.1152/jn.00993.2015</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2016-05, Vol.115 (5), p.2501-2518
issn 0022-3077
1522-1598
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4922469
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Action Potentials
Adaptation, Physiological
Animals
Decapoda (Crustacea)
Ganglia, Invertebrate - cytology
Ganglia, Invertebrate - physiology
Models, Neurological
Neurons - physiology
Pylorus - innervation
Sensory Processing
title Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20spike-rate%20adaptation%20into%20a%20rate%20code%20in%20mathematical%20and%20biological%20neurons&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Ralston,%20Bridget%20N&rft.date=2016-05-01&rft.volume=115&rft.issue=5&rft.spage=2501&rft.epage=2518&rft.pages=2501-2518&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00993.2015&rft_dat=%3Cproquest_pubme%3E1790020172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790020172&rft_id=info:pmid/26888106&rfr_iscdi=true