Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro

Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2016-07, Vol.14 (1), p.637-642
Hauptverfasser: FENG, YUANYUAN, YANG, PAN, LUO, SHOUMING, ZHANG, ZHIHUI, LI, HUAKANG, ZHU, PING, SONG, ZHIYUAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 1
container_start_page 637
container_title Molecular medicine reports
container_volume 14
creator FENG, YUANYUAN
YANG, PAN
LUO, SHOUMING
ZHANG, ZHIHUI
LI, HUAKANG
ZHU, PING
SONG, ZHIYUAN
description Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.
doi_str_mv 10.3892/mmr.2016.5306
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4918598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458680773</galeid><sourcerecordid>A458680773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</originalsourceid><addsrcrecordid>eNptkc1v1DAQxSMEoqVw5IoicYBLFn9_XJCqCgqoEgfgbDnOpJsqjhc7qeh_z0S7XShCPth6_s2zZ15VvaRkw41l72LMG0ao2khO1KPqlGpLG06IeHw4M2v1SfWslBtClGTSPq1OmGaMcWVOqy_ftukXq4epHxeYApQ6QsHD9i76sS4zxDrAONa9nwGp2tchNWEZ5yVDHVMH46reDnNOz6snvR8LvDjsZ9WPjx--X3xqrr5efr44v2qCpGJuei0VlcZK5lXPVLBGUt0KIwJ-L4AIKHY9ihKkbKkxghLetqhJUFpIfla93_vuljZCF2Casx_dLg_R5zuX_OAe3kzD1l2nWycsNdIaNHh7MMjp5wJldnEoa5d-grQUh2PTRmlLGKKv_0Fv0pInbM9Ry5nQlhv5h7r2IzicZcJ3w2rqzoU0yhCtOVKb_1C4OohDSBP0A-oPCpp9QciplAz9sUdK3Bq-w_DdGr5bw0f-1d-DOdL3aSPwZg-UnZ-6oUvlyKBTQ0VDaINGmv8GZTC1Pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932479385</pqid></control><display><type>article</type><title>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>FENG, YUANYUAN ; YANG, PAN ; LUO, SHOUMING ; ZHANG, ZHIHUI ; LI, HUAKANG ; ZHU, PING ; SONG, ZHIYUAN</creator><creatorcontrib>FENG, YUANYUAN ; YANG, PAN ; LUO, SHOUMING ; ZHANG, ZHIHUI ; LI, HUAKANG ; ZHU, PING ; SONG, ZHIYUAN</creatorcontrib><description>Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.</description><identifier>ISSN: 1791-2997</identifier><identifier>EISSN: 1791-3004</identifier><identifier>DOI: 10.3892/mmr.2016.5306</identifier><identifier>PMID: 27222368</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>Animals ; Biomarkers ; Bone marrow ; Cardiomyocytes ; cardiomyogenic differentiation ; Cardiovascular diseases ; Care and treatment ; Cell culture ; Cell Differentiation - genetics ; Cell fate ; Cell growth ; Cells, Cultured ; co-culture ; Coculture Techniques ; Connexin 43 ; Connexin 45 ; Development and progression ; Dogs ; Electrophysiology ; Experiments ; Female ; Gene Expression ; Genes, Reporter ; Genetic aspects ; Growth ; Health aspects ; Heart ; Heart diseases ; Homeobox ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Hyperpolarization ; Laboratory animals ; Male ; Medical research ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Mesenchyme ; Mutation ; Myocardium ; neonatal cardiomyocytes ; Neonates ; Newborn babies ; Nkx2.5 protein ; Polymerase chain reaction ; Properties ; Red fluorescent protein ; Reverse transcription ; Rodents ; Shox2 ; Stem cell transplantation ; Stem cells ; Studies ; Transcription factors ; Transfection ; Western blotting</subject><ispartof>Molecular medicine reports, 2016-07, Vol.14 (1), p.637-642</ispartof><rights>Copyright: © Feng et al.</rights><rights>COPYRIGHT 2016 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2016</rights><rights>Copyright: © Feng et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</citedby><cites>FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,5571,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27222368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FENG, YUANYUAN</creatorcontrib><creatorcontrib>YANG, PAN</creatorcontrib><creatorcontrib>LUO, SHOUMING</creatorcontrib><creatorcontrib>ZHANG, ZHIHUI</creatorcontrib><creatorcontrib>LI, HUAKANG</creatorcontrib><creatorcontrib>ZHU, PING</creatorcontrib><creatorcontrib>SONG, ZHIYUAN</creatorcontrib><title>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</title><title>Molecular medicine reports</title><addtitle>Mol Med Rep</addtitle><description>Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.</description><subject>Animals</subject><subject>Biomarkers</subject><subject>Bone marrow</subject><subject>Cardiomyocytes</subject><subject>cardiomyogenic differentiation</subject><subject>Cardiovascular diseases</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Cell growth</subject><subject>Cells, Cultured</subject><subject>co-culture</subject><subject>Coculture Techniques</subject><subject>Connexin 43</subject><subject>Connexin 45</subject><subject>Development and progression</subject><subject>Dogs</subject><subject>Electrophysiology</subject><subject>Experiments</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeobox</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Hyperpolarization</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medical research</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Mutation</subject><subject>Myocardium</subject><subject>neonatal cardiomyocytes</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Nkx2.5 protein</subject><subject>Polymerase chain reaction</subject><subject>Properties</subject><subject>Red fluorescent protein</subject><subject>Reverse transcription</subject><subject>Rodents</subject><subject>Shox2</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Transcription factors</subject><subject>Transfection</subject><subject>Western blotting</subject><issn>1791-2997</issn><issn>1791-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1v1DAQxSMEoqVw5IoicYBLFn9_XJCqCgqoEgfgbDnOpJsqjhc7qeh_z0S7XShCPth6_s2zZ15VvaRkw41l72LMG0ao2khO1KPqlGpLG06IeHw4M2v1SfWslBtClGTSPq1OmGaMcWVOqy_ftukXq4epHxeYApQ6QsHD9i76sS4zxDrAONa9nwGp2tchNWEZ5yVDHVMH46reDnNOz6snvR8LvDjsZ9WPjx--X3xqrr5efr44v2qCpGJuei0VlcZK5lXPVLBGUt0KIwJ-L4AIKHY9ihKkbKkxghLetqhJUFpIfla93_vuljZCF2Casx_dLg_R5zuX_OAe3kzD1l2nWycsNdIaNHh7MMjp5wJldnEoa5d-grQUh2PTRmlLGKKv_0Fv0pInbM9Ry5nQlhv5h7r2IzicZcJ3w2rqzoU0yhCtOVKb_1C4OohDSBP0A-oPCpp9QciplAz9sUdK3Bq-w_DdGr5bw0f-1d-DOdL3aSPwZg-UnZ-6oUvlyKBTQ0VDaINGmv8GZTC1Pw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>FENG, YUANYUAN</creator><creator>YANG, PAN</creator><creator>LUO, SHOUMING</creator><creator>ZHANG, ZHIHUI</creator><creator>LI, HUAKANG</creator><creator>ZHU, PING</creator><creator>SONG, ZHIYUAN</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160701</creationdate><title>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</title><author>FENG, YUANYUAN ; YANG, PAN ; LUO, SHOUMING ; ZHANG, ZHIHUI ; LI, HUAKANG ; ZHU, PING ; SONG, ZHIYUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomarkers</topic><topic>Bone marrow</topic><topic>Cardiomyocytes</topic><topic>cardiomyogenic differentiation</topic><topic>Cardiovascular diseases</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Cell growth</topic><topic>Cells, Cultured</topic><topic>co-culture</topic><topic>Coculture Techniques</topic><topic>Connexin 43</topic><topic>Connexin 45</topic><topic>Development and progression</topic><topic>Dogs</topic><topic>Electrophysiology</topic><topic>Experiments</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeobox</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Hyperpolarization</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medical research</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Mutation</topic><topic>Myocardium</topic><topic>neonatal cardiomyocytes</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Nkx2.5 protein</topic><topic>Polymerase chain reaction</topic><topic>Properties</topic><topic>Red fluorescent protein</topic><topic>Reverse transcription</topic><topic>Rodents</topic><topic>Shox2</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Transcription factors</topic><topic>Transfection</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FENG, YUANYUAN</creatorcontrib><creatorcontrib>YANG, PAN</creatorcontrib><creatorcontrib>LUO, SHOUMING</creatorcontrib><creatorcontrib>ZHANG, ZHIHUI</creatorcontrib><creatorcontrib>LI, HUAKANG</creatorcontrib><creatorcontrib>ZHU, PING</creatorcontrib><creatorcontrib>SONG, ZHIYUAN</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular medicine reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FENG, YUANYUAN</au><au>YANG, PAN</au><au>LUO, SHOUMING</au><au>ZHANG, ZHIHUI</au><au>LI, HUAKANG</au><au>ZHU, PING</au><au>SONG, ZHIYUAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</atitle><jtitle>Molecular medicine reports</jtitle><addtitle>Mol Med Rep</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>14</volume><issue>1</issue><spage>637</spage><epage>642</epage><pages>637-642</pages><issn>1791-2997</issn><eissn>1791-3004</eissn><abstract>Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>27222368</pmid><doi>10.3892/mmr.2016.5306</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1791-2997
ispartof Molecular medicine reports, 2016-07, Vol.14 (1), p.637-642
issn 1791-2997
1791-3004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4918598
source Spandidos Publications Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Biomarkers
Bone marrow
Cardiomyocytes
cardiomyogenic differentiation
Cardiovascular diseases
Care and treatment
Cell culture
Cell Differentiation - genetics
Cell fate
Cell growth
Cells, Cultured
co-culture
Coculture Techniques
Connexin 43
Connexin 45
Development and progression
Dogs
Electrophysiology
Experiments
Female
Gene Expression
Genes, Reporter
Genetic aspects
Growth
Health aspects
Heart
Heart diseases
Homeobox
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Hyperpolarization
Laboratory animals
Male
Medical research
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Mesenchyme
Mutation
Myocardium
neonatal cardiomyocytes
Neonates
Newborn babies
Nkx2.5 protein
Polymerase chain reaction
Properties
Red fluorescent protein
Reverse transcription
Rodents
Shox2
Stem cell transplantation
Stem cells
Studies
Transcription factors
Transfection
Western blotting
title Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shox2%20influences%20mesenchymal%20stem%20cell%20fate%20in%20a%20co-culture%20model%20in%20vitro&rft.jtitle=Molecular%20medicine%20reports&rft.au=FENG,%20YUANYUAN&rft.date=2016-07-01&rft.volume=14&rft.issue=1&rft.spage=637&rft.epage=642&rft.pages=637-642&rft.issn=1791-2997&rft.eissn=1791-3004&rft_id=info:doi/10.3892/mmr.2016.5306&rft_dat=%3Cgale_pubme%3EA458680773%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932479385&rft_id=info:pmid/27222368&rft_galeid=A458680773&rfr_iscdi=true