Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro
Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characte...
Gespeichert in:
Veröffentlicht in: | Molecular medicine reports 2016-07, Vol.14 (1), p.637-642 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 642 |
---|---|
container_issue | 1 |
container_start_page | 637 |
container_title | Molecular medicine reports |
container_volume | 14 |
creator | FENG, YUANYUAN YANG, PAN LUO, SHOUMING ZHANG, ZHIHUI LI, HUAKANG ZHU, PING SONG, ZHIYUAN |
description | Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro. |
doi_str_mv | 10.3892/mmr.2016.5306 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4918598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458680773</galeid><sourcerecordid>A458680773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</originalsourceid><addsrcrecordid>eNptkc1v1DAQxSMEoqVw5IoicYBLFn9_XJCqCgqoEgfgbDnOpJsqjhc7qeh_z0S7XShCPth6_s2zZ15VvaRkw41l72LMG0ao2khO1KPqlGpLG06IeHw4M2v1SfWslBtClGTSPq1OmGaMcWVOqy_ftukXq4epHxeYApQ6QsHD9i76sS4zxDrAONa9nwGp2tchNWEZ5yVDHVMH46reDnNOz6snvR8LvDjsZ9WPjx--X3xqrr5efr44v2qCpGJuei0VlcZK5lXPVLBGUt0KIwJ-L4AIKHY9ihKkbKkxghLetqhJUFpIfla93_vuljZCF2Casx_dLg_R5zuX_OAe3kzD1l2nWycsNdIaNHh7MMjp5wJldnEoa5d-grQUh2PTRmlLGKKv_0Fv0pInbM9Ry5nQlhv5h7r2IzicZcJ3w2rqzoU0yhCtOVKb_1C4OohDSBP0A-oPCpp9QciplAz9sUdK3Bq-w_DdGr5bw0f-1d-DOdL3aSPwZg-UnZ-6oUvlyKBTQ0VDaINGmv8GZTC1Pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932479385</pqid></control><display><type>article</type><title>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>FENG, YUANYUAN ; YANG, PAN ; LUO, SHOUMING ; ZHANG, ZHIHUI ; LI, HUAKANG ; ZHU, PING ; SONG, ZHIYUAN</creator><creatorcontrib>FENG, YUANYUAN ; YANG, PAN ; LUO, SHOUMING ; ZHANG, ZHIHUI ; LI, HUAKANG ; ZHU, PING ; SONG, ZHIYUAN</creatorcontrib><description>Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.</description><identifier>ISSN: 1791-2997</identifier><identifier>EISSN: 1791-3004</identifier><identifier>DOI: 10.3892/mmr.2016.5306</identifier><identifier>PMID: 27222368</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>Animals ; Biomarkers ; Bone marrow ; Cardiomyocytes ; cardiomyogenic differentiation ; Cardiovascular diseases ; Care and treatment ; Cell culture ; Cell Differentiation - genetics ; Cell fate ; Cell growth ; Cells, Cultured ; co-culture ; Coculture Techniques ; Connexin 43 ; Connexin 45 ; Development and progression ; Dogs ; Electrophysiology ; Experiments ; Female ; Gene Expression ; Genes, Reporter ; Genetic aspects ; Growth ; Health aspects ; Heart ; Heart diseases ; Homeobox ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Hyperpolarization ; Laboratory animals ; Male ; Medical research ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Mesenchyme ; Mutation ; Myocardium ; neonatal cardiomyocytes ; Neonates ; Newborn babies ; Nkx2.5 protein ; Polymerase chain reaction ; Properties ; Red fluorescent protein ; Reverse transcription ; Rodents ; Shox2 ; Stem cell transplantation ; Stem cells ; Studies ; Transcription factors ; Transfection ; Western blotting</subject><ispartof>Molecular medicine reports, 2016-07, Vol.14 (1), p.637-642</ispartof><rights>Copyright: © Feng et al.</rights><rights>COPYRIGHT 2016 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2016</rights><rights>Copyright: © Feng et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</citedby><cites>FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,5571,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27222368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FENG, YUANYUAN</creatorcontrib><creatorcontrib>YANG, PAN</creatorcontrib><creatorcontrib>LUO, SHOUMING</creatorcontrib><creatorcontrib>ZHANG, ZHIHUI</creatorcontrib><creatorcontrib>LI, HUAKANG</creatorcontrib><creatorcontrib>ZHU, PING</creatorcontrib><creatorcontrib>SONG, ZHIYUAN</creatorcontrib><title>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</title><title>Molecular medicine reports</title><addtitle>Mol Med Rep</addtitle><description>Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.</description><subject>Animals</subject><subject>Biomarkers</subject><subject>Bone marrow</subject><subject>Cardiomyocytes</subject><subject>cardiomyogenic differentiation</subject><subject>Cardiovascular diseases</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Cell growth</subject><subject>Cells, Cultured</subject><subject>co-culture</subject><subject>Coculture Techniques</subject><subject>Connexin 43</subject><subject>Connexin 45</subject><subject>Development and progression</subject><subject>Dogs</subject><subject>Electrophysiology</subject><subject>Experiments</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeobox</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Hyperpolarization</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medical research</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Mutation</subject><subject>Myocardium</subject><subject>neonatal cardiomyocytes</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Nkx2.5 protein</subject><subject>Polymerase chain reaction</subject><subject>Properties</subject><subject>Red fluorescent protein</subject><subject>Reverse transcription</subject><subject>Rodents</subject><subject>Shox2</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Transcription factors</subject><subject>Transfection</subject><subject>Western blotting</subject><issn>1791-2997</issn><issn>1791-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1v1DAQxSMEoqVw5IoicYBLFn9_XJCqCgqoEgfgbDnOpJsqjhc7qeh_z0S7XShCPth6_s2zZ15VvaRkw41l72LMG0ao2khO1KPqlGpLG06IeHw4M2v1SfWslBtClGTSPq1OmGaMcWVOqy_ftukXq4epHxeYApQ6QsHD9i76sS4zxDrAONa9nwGp2tchNWEZ5yVDHVMH46reDnNOz6snvR8LvDjsZ9WPjx--X3xqrr5efr44v2qCpGJuei0VlcZK5lXPVLBGUt0KIwJ-L4AIKHY9ihKkbKkxghLetqhJUFpIfla93_vuljZCF2Casx_dLg_R5zuX_OAe3kzD1l2nWycsNdIaNHh7MMjp5wJldnEoa5d-grQUh2PTRmlLGKKv_0Fv0pInbM9Ry5nQlhv5h7r2IzicZcJ3w2rqzoU0yhCtOVKb_1C4OohDSBP0A-oPCpp9QciplAz9sUdK3Bq-w_DdGr5bw0f-1d-DOdL3aSPwZg-UnZ-6oUvlyKBTQ0VDaINGmv8GZTC1Pw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>FENG, YUANYUAN</creator><creator>YANG, PAN</creator><creator>LUO, SHOUMING</creator><creator>ZHANG, ZHIHUI</creator><creator>LI, HUAKANG</creator><creator>ZHU, PING</creator><creator>SONG, ZHIYUAN</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160701</creationdate><title>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</title><author>FENG, YUANYUAN ; YANG, PAN ; LUO, SHOUMING ; ZHANG, ZHIHUI ; LI, HUAKANG ; ZHU, PING ; SONG, ZHIYUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-f756158952a6f26c98517b484c065ce4cf26df8515e55b1884103bb6df5e67453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomarkers</topic><topic>Bone marrow</topic><topic>Cardiomyocytes</topic><topic>cardiomyogenic differentiation</topic><topic>Cardiovascular diseases</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Cell growth</topic><topic>Cells, Cultured</topic><topic>co-culture</topic><topic>Coculture Techniques</topic><topic>Connexin 43</topic><topic>Connexin 45</topic><topic>Development and progression</topic><topic>Dogs</topic><topic>Electrophysiology</topic><topic>Experiments</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeobox</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Hyperpolarization</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medical research</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Mutation</topic><topic>Myocardium</topic><topic>neonatal cardiomyocytes</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Nkx2.5 protein</topic><topic>Polymerase chain reaction</topic><topic>Properties</topic><topic>Red fluorescent protein</topic><topic>Reverse transcription</topic><topic>Rodents</topic><topic>Shox2</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Transcription factors</topic><topic>Transfection</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FENG, YUANYUAN</creatorcontrib><creatorcontrib>YANG, PAN</creatorcontrib><creatorcontrib>LUO, SHOUMING</creatorcontrib><creatorcontrib>ZHANG, ZHIHUI</creatorcontrib><creatorcontrib>LI, HUAKANG</creatorcontrib><creatorcontrib>ZHU, PING</creatorcontrib><creatorcontrib>SONG, ZHIYUAN</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular medicine reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FENG, YUANYUAN</au><au>YANG, PAN</au><au>LUO, SHOUMING</au><au>ZHANG, ZHIHUI</au><au>LI, HUAKANG</au><au>ZHU, PING</au><au>SONG, ZHIYUAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro</atitle><jtitle>Molecular medicine reports</jtitle><addtitle>Mol Med Rep</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>14</volume><issue>1</issue><spage>637</spage><epage>642</epage><pages>637-642</pages><issn>1791-2997</issn><eissn>1791-3004</eissn><abstract>Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>27222368</pmid><doi>10.3892/mmr.2016.5306</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1791-2997 |
ispartof | Molecular medicine reports, 2016-07, Vol.14 (1), p.637-642 |
issn | 1791-2997 1791-3004 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4918598 |
source | Spandidos Publications Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Biomarkers Bone marrow Cardiomyocytes cardiomyogenic differentiation Cardiovascular diseases Care and treatment Cell culture Cell Differentiation - genetics Cell fate Cell growth Cells, Cultured co-culture Coculture Techniques Connexin 43 Connexin 45 Development and progression Dogs Electrophysiology Experiments Female Gene Expression Genes, Reporter Genetic aspects Growth Health aspects Heart Heart diseases Homeobox Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Hyperpolarization Laboratory animals Male Medical research Mesenchymal stem cells Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Mesenchyme Mutation Myocardium neonatal cardiomyocytes Neonates Newborn babies Nkx2.5 protein Polymerase chain reaction Properties Red fluorescent protein Reverse transcription Rodents Shox2 Stem cell transplantation Stem cells Studies Transcription factors Transfection Western blotting |
title | Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shox2%20influences%20mesenchymal%20stem%20cell%20fate%20in%20a%20co-culture%20model%20in%20vitro&rft.jtitle=Molecular%20medicine%20reports&rft.au=FENG,%20YUANYUAN&rft.date=2016-07-01&rft.volume=14&rft.issue=1&rft.spage=637&rft.epage=642&rft.pages=637-642&rft.issn=1791-2997&rft.eissn=1791-3004&rft_id=info:doi/10.3892/mmr.2016.5306&rft_dat=%3Cgale_pubme%3EA458680773%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932479385&rft_id=info:pmid/27222368&rft_galeid=A458680773&rfr_iscdi=true |