Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy
Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-08, Vol.6 (1), p.7885-7885, Article 7885 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7885 |
---|---|
container_issue | 1 |
container_start_page | 7885 |
container_title | Nature communications |
container_volume | 6 |
creator | Talukdar, Abdul Faheem Khan, M. Lee, Dongkyu Kim, Seonghwan Thundat, Thomas Koley, Goutam |
description | Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement transduction using an AlGaN/GaN heterojunction field effect transistor-integrated GaN microcantilever that utilizes piezoelectric polarization-induced changes in two-dimensional electron gas to transduce displacement with very high sensitivity. The piezotransistor demonstrated an ultra-high gauge factor of 8,700 while consuming an extremely low power of 1.36 nW, and transduced external excitation with a superior noise-limited resolution of 12.43 fm Hz
−1/2
and an outstanding responsivity of 170 nV fm
−1
, which is comparable to the optical transduction limits. These extraordinary characteristics, which enabled unique detection of nanogram quantity of analytes using photoacoustic spectroscopy, can be readily exploited in realizing a multitude of novel sensing paradigms.
Microelectromechanical systems—micrometre-sized devices with movable parts—make highly sensitive transducers. Here, the authors fabricate an integrated gallium nitride microcantilever and heterojunction field effect transistor that uses piezoelectric effects to measure displacement at the femtoscale level. |
doi_str_mv | 10.1038/ncomms8885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4918345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703699064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9e50701d4c68b32763128d538e49bfb86533d65d5db49ebfa817b4df70d0d9f43</originalsourceid><addsrcrecordid>eNplkV1LHTEQhkNRVNQbf0BZ6I1Yjk02yW5yUxDphyDoRcXLkE0mGtndbJOscPrrm-Ox9qi5mYF58s47MwgdEXxKMBVfRhOGIQkh-Ae0V2NGFqSt6dZGvosOU3rA5VFJBGM7aLduai6koHvo9trDn5CjHpNP2T9C9ZTb2WQfxiq4ysGQQzK6h8r6NPXawABjrlyI1XQfctAmzOWrqdIEJsfChml5gLad7hMcPsd9dPP926_zn4vLqx8X52eXC8OxyAsJHLeYWGYa0dG6bSipheVUAJOd60TDKbUNt9x2TELntCBtx6xrscVWOkb30de17jR3A1hTnEXdqyn6QcelCtqr15XR36u78KhY2QVlvAgcPwvE8HuGlNXgk4G-1yOUuRRpMW2kxM2q16c36EOY41jGW1F1w7AktFAna8qUVaQI7sUMwWp1MvX_ZAX-uGn_Bf13oAJ8XgOplMY7iBs938v9BWa8pF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702640913</pqid></control><display><type>article</type><title>Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Talukdar, Abdul ; Faheem Khan, M. ; Lee, Dongkyu ; Kim, Seonghwan ; Thundat, Thomas ; Koley, Goutam</creator><creatorcontrib>Talukdar, Abdul ; Faheem Khan, M. ; Lee, Dongkyu ; Kim, Seonghwan ; Thundat, Thomas ; Koley, Goutam</creatorcontrib><description>Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement transduction using an AlGaN/GaN heterojunction field effect transistor-integrated GaN microcantilever that utilizes piezoelectric polarization-induced changes in two-dimensional electron gas to transduce displacement with very high sensitivity. The piezotransistor demonstrated an ultra-high gauge factor of 8,700 while consuming an extremely low power of 1.36 nW, and transduced external excitation with a superior noise-limited resolution of 12.43 fm Hz
−1/2
and an outstanding responsivity of 170 nV fm
−1
, which is comparable to the optical transduction limits. These extraordinary characteristics, which enabled unique detection of nanogram quantity of analytes using photoacoustic spectroscopy, can be readily exploited in realizing a multitude of novel sensing paradigms.
Microelectromechanical systems—micrometre-sized devices with movable parts—make highly sensitive transducers. Here, the authors fabricate an integrated gallium nitride microcantilever and heterojunction field effect transistor that uses piezoelectric effects to measure displacement at the femtoscale level.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms8885</identifier><identifier>PMID: 26258983</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/25/3927 ; 639/925/350/2251 ; 639/925/930 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-08, Vol.6 (1), p.7885-7885, Article 7885</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9e50701d4c68b32763128d538e49bfb86533d65d5db49ebfa817b4df70d0d9f43</citedby><cites>FETCH-LOGICAL-c508t-9e50701d4c68b32763128d538e49bfb86533d65d5db49ebfa817b4df70d0d9f43</cites><orcidid>0000-0001-7735-3582 ; 0000000177353582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918345/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918345/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26258983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Talukdar, Abdul</creatorcontrib><creatorcontrib>Faheem Khan, M.</creatorcontrib><creatorcontrib>Lee, Dongkyu</creatorcontrib><creatorcontrib>Kim, Seonghwan</creatorcontrib><creatorcontrib>Thundat, Thomas</creatorcontrib><creatorcontrib>Koley, Goutam</creatorcontrib><title>Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement transduction using an AlGaN/GaN heterojunction field effect transistor-integrated GaN microcantilever that utilizes piezoelectric polarization-induced changes in two-dimensional electron gas to transduce displacement with very high sensitivity. The piezotransistor demonstrated an ultra-high gauge factor of 8,700 while consuming an extremely low power of 1.36 nW, and transduced external excitation with a superior noise-limited resolution of 12.43 fm Hz
−1/2
and an outstanding responsivity of 170 nV fm
−1
, which is comparable to the optical transduction limits. These extraordinary characteristics, which enabled unique detection of nanogram quantity of analytes using photoacoustic spectroscopy, can be readily exploited in realizing a multitude of novel sensing paradigms.
Microelectromechanical systems—micrometre-sized devices with movable parts—make highly sensitive transducers. Here, the authors fabricate an integrated gallium nitride microcantilever and heterojunction field effect transistor that uses piezoelectric effects to measure displacement at the femtoscale level.</description><subject>140/125</subject><subject>639/766/25/3927</subject><subject>639/925/350/2251</subject><subject>639/925/930</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LHTEQhkNRVNQbf0BZ6I1Yjk02yW5yUxDphyDoRcXLkE0mGtndbJOscPrrm-Ox9qi5mYF58s47MwgdEXxKMBVfRhOGIQkh-Ae0V2NGFqSt6dZGvosOU3rA5VFJBGM7aLduai6koHvo9trDn5CjHpNP2T9C9ZTb2WQfxiq4ysGQQzK6h8r6NPXawABjrlyI1XQfctAmzOWrqdIEJsfChml5gLad7hMcPsd9dPP926_zn4vLqx8X52eXC8OxyAsJHLeYWGYa0dG6bSipheVUAJOd60TDKbUNt9x2TELntCBtx6xrscVWOkb30de17jR3A1hTnEXdqyn6QcelCtqr15XR36u78KhY2QVlvAgcPwvE8HuGlNXgk4G-1yOUuRRpMW2kxM2q16c36EOY41jGW1F1w7AktFAna8qUVaQI7sUMwWp1MvX_ZAX-uGn_Bf13oAJ8XgOplMY7iBs938v9BWa8pF4</recordid><startdate>20150810</startdate><enddate>20150810</enddate><creator>Talukdar, Abdul</creator><creator>Faheem Khan, M.</creator><creator>Lee, Dongkyu</creator><creator>Kim, Seonghwan</creator><creator>Thundat, Thomas</creator><creator>Koley, Goutam</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7735-3582</orcidid><orcidid>https://orcid.org/0000000177353582</orcidid></search><sort><creationdate>20150810</creationdate><title>Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy</title><author>Talukdar, Abdul ; Faheem Khan, M. ; Lee, Dongkyu ; Kim, Seonghwan ; Thundat, Thomas ; Koley, Goutam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9e50701d4c68b32763128d538e49bfb86533d65d5db49ebfa817b4df70d0d9f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/125</topic><topic>639/766/25/3927</topic><topic>639/925/350/2251</topic><topic>639/925/930</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talukdar, Abdul</creatorcontrib><creatorcontrib>Faheem Khan, M.</creatorcontrib><creatorcontrib>Lee, Dongkyu</creatorcontrib><creatorcontrib>Kim, Seonghwan</creatorcontrib><creatorcontrib>Thundat, Thomas</creatorcontrib><creatorcontrib>Koley, Goutam</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talukdar, Abdul</au><au>Faheem Khan, M.</au><au>Lee, Dongkyu</au><au>Kim, Seonghwan</au><au>Thundat, Thomas</au><au>Koley, Goutam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-08-10</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>7885</spage><epage>7885</epage><pages>7885-7885</pages><artnum>7885</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement transduction using an AlGaN/GaN heterojunction field effect transistor-integrated GaN microcantilever that utilizes piezoelectric polarization-induced changes in two-dimensional electron gas to transduce displacement with very high sensitivity. The piezotransistor demonstrated an ultra-high gauge factor of 8,700 while consuming an extremely low power of 1.36 nW, and transduced external excitation with a superior noise-limited resolution of 12.43 fm Hz
−1/2
and an outstanding responsivity of 170 nV fm
−1
, which is comparable to the optical transduction limits. These extraordinary characteristics, which enabled unique detection of nanogram quantity of analytes using photoacoustic spectroscopy, can be readily exploited in realizing a multitude of novel sensing paradigms.
Microelectromechanical systems—micrometre-sized devices with movable parts—make highly sensitive transducers. Here, the authors fabricate an integrated gallium nitride microcantilever and heterojunction field effect transistor that uses piezoelectric effects to measure displacement at the femtoscale level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26258983</pmid><doi>10.1038/ncomms8885</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7735-3582</orcidid><orcidid>https://orcid.org/0000000177353582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-08, Vol.6 (1), p.7885-7885, Article 7885 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4918345 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | 140/125 639/766/25/3927 639/925/350/2251 639/925/930 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezotransistive%20transduction%20of%20femtoscale%20displacement%20for%20photoacoustic%20spectroscopy&rft.jtitle=Nature%20communications&rft.au=Talukdar,%20Abdul&rft.date=2015-08-10&rft.volume=6&rft.issue=1&rft.spage=7885&rft.epage=7885&rft.pages=7885-7885&rft.artnum=7885&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms8885&rft_dat=%3Cproquest_pubme%3E1703699064%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702640913&rft_id=info:pmid/26258983&rfr_iscdi=true |